Energy transition strategies in Germany have led to an expansion of energy crop cultivation in landscape, with silage maize as most valuable feedstock. The changes in the traditional cropping systems, with increasing shares of maize, raised concerns about the sustainability of agricultural feedstock production regarding threats to soil health. However, spatially explicit data about silage maize cultivation are missing; thus, implications for soil cannot be estimated in a precise way. With this study, we firstly aimed to track the fields cultivated with maize based on remote sensing data. Secondly, available soil data were target-specifically processed to determine the site-specific vulnerability of the soils for erosion and compaction. The generated, spatially-explicit data served as basis for a differentiated analysis of the development of the agricultural biogas sector, associated maize cultivation and its implications for soil health. In the study area, located in a low mountain range region in Western Germany, the number and capacity of biogas producing units increased by 25 installations and 10,163 kW from 2009 to 2016. The remote sensing-based classification approach showed that the maize cultivation area was expanded by 16% from 7305 to 8447 hectares. Thus, maize cultivation accounted for about 20% of the arable land use; however, with distinct local differences. Significant shares of about 30% of the maize cultivation was done on fields that show at least high potentials for soil erosion exceeding 25 t soil ha−1 a−1. Furthermore, about 10% of the maize cultivation was done on fields that pedogenetically show an elevated risk for soil compaction. In order to reach more sustainable cultivation systems of feedstock for anaerobic digestion, changes in cultivated crops and management strategies are urgently required, particularly against first signs of climate change. The presented approach can regionally be modified in order to develop site-adapted, sustainable bioenergy cropping systems.
A new hyperspectral thermal infrared imaging facility has been setup at the Centre de Recherche Public-Gabriel Lippmann to measure spectral emissivity values of typical earth surface samples in the 8 to 12 μm range at a spectral resolution of up to 0.25 cm -1 . The instrument is based on a Hyper-Cam-LW built by Telops with a modified fore-optic for vertical measurements at ground level and a platform for airborne acquisitions. Here, we show first results on the retrieval of emissivity spectra of mineral and rock samples. Hyper-Cam spectra were compared to reference spectra obtained with a Bruker Vertex 70 instrument. Evaluation of retrieved emissivity spectra indicates good agreement with reference measurements. An assessment of the spatial variability of emissivity spectra of material surfaces reveals interesting features in a bunter sandstone and calcareous sinter sample.
Detailed information from global remote sensing has greatly advanced ourunderstanding of Earth as a system in general and of agricultural processes in particular.Vegetation monitoring with global remote sensing systems over long time periods iscritical to gain a better understanding of processes related to agricultural change over longtime periods. This specifically relates to sub-humid to semi-arid ecosystems, whereagricultural change in grazing lands can only be detected based on long time series. Byintegrating data from different sensors it is theoretically possible to construct NDVI timeseries back to the early 1980s. However, such integration is hampered by uncertainties inthe comparability between different sensor products. To be able to rely on vegetationtrends derived from integrated time series it is therefore crucial to investigate whether vegetation trends derived from NDVI and phenological parameters are consistent acrossproducts. In this paper we analyzed several indicators of vegetation change for a range ofagricultural systems in Inner Mongolia, China, and compared the results across differentsatellite archives. Specifically, we compared two of the prime NDVI archives—AVHRR Global Inventory Modeling and Mapping Studies (GIMMS) and SPOT Vegetation (VGT)NDVI. Because a true accuracy assessment of long time series is not possible, we furthercompared SPOT VGT NDVI with NDVI from MODIS Terra as a benchmark. We foundhigh similarities in interannual trends, and also in trends of the seasonal amplitude andintegral between SPOT VGT and MODIS Terra (r > 0.9). However, we observedconsiderable disagreements in NDVI-derived trends between AVHRR GIMMS and SPOTVGT. We detected similar discrepancies for trends based on phenological parameters, suchas amplitude and integral of NDVI curves corresponding to seasonal vegetation cycles.Inconsistencies were partially related to land cover and vegetation density. Differentpre-processing schemes and the coarser spatial resolution of AVHRR GIMMS introducedfurther uncertainties. Our results corroborate findings from other studies that vegetationtrends derived from AVHRR GIMMS data not always reflect true vegetation changes. Amore thorough understanding of the factors introducing uncertainties in AVHRR GIMMStime series is needed, and we caution against using AVHRR GIMMS data in regionalstudies without applying regional sensitivity analyses.
Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the Mid West CONUS, i.e. IA IL IN MI MN MO OH WI For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the West Coast CONUS, i.e. CA OR WA For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
A new instrument has been setup at the Centre de Recherche Public-Gabriel Lippmann to measure spectral emissivity values of typical earth surface samples in the 8 to 12 μm range at a spectral resolution of up to 0.25 cm−1. The instrument is based on a Hyper-Cam-LW built by Telops with a modified fore-optic for vertical measurements at ground level and a platform for airborne acquisitions. A processing chain has been developed to convert calibrated radiances into emissivity spectra. Repeat measurements taken on samples of sandstone show a high repeatability of the system with a wavelength dependent standard deviation of less than 0.01 (1.25% of the mean emissivity). Evaluation of retrieved emissivity spectra indicates good agreement with reference measurements. The new instrument facilitates the assessment of the spatial variability of emissivity spectra of material surfaces—at present still largely unknown—at various scales from ground and airborne platforms and thus will provide new opportunities in environmental remote sensing.
Abstract Soil‐quality parameters, such as soil organic matter (SOM) and plant‐available nutrient contents, microbial properties, aggregate stability, and the amounts of heavy metals were carried out in arable soils of different rotation schedules applied with a total of 50 Mg dry mass ha –1 biowaste compost relative to an untreated control. This was investigated during a 10 y period from 1994 to 2004. Overall, soil‐quality parameters studied appeared to be promoted by biowaste‐compost application. This was evidenced for example by a remarkable increase of SOM and total N content of ≈ 15%–20% relative to the control. Subsequently, amounts of soil microbial biomass and alkaline phosphatase activity were significantly increased as well. In addition, biowaste‐compost application revealed an increase of plant‐available P and K contents and aggregate stability in soil. There was, however, no treatment effect for net N‐mineralization rates. Moreover, in soils of maize and sugar beet rotation schedule a slight decrease was found. Heavy‐metal contents of Pb and Zn were significantly increased in all compost‐treated soils, whereas no significant increase of Cd and Cu contents was measured. However, the investigated amounts were far below of the limits of the German Biowaste Ordinance. It is finally recommended, that biowaste compost may sustain and improve soil quality in agriculture when N nutrition will be considered.
Empirical and physical approaches to estimate leaf pigments in Norway spruce needles are compared. Foliar samples from 13 stands of Norway spruce, that are heterogeneous in terms of soil nutrient availability were collected (n=78). Foliage was separated by age class and subjected to routine biochemical analysis for chlorophyll a and b. Needle reflectance of stacked layers was measured using a high spectral resolution spectroradiometer. Three sets of reflectance were used for further analysis: i) 1 nm spectral resolution, ii) degraded to HyMap spectral bands, and iii) HyMap spectral bands with a normally distributed noise component added (σ=0.002). From reflectance first-derivative of reflectance, continuum removed reflectance, and normalized band-depths were calculated. Relations between spectra and pigments were developed using stepwise multiple linear regression (SMLR) and partial least square regression (PLSR). The conifer leaf model LIBERTY was inverted using an artificial neural network (ANN). LIBERTY was used in the forward mode to simulate needle stack layer reflectance based on typical leaf parameters. First-derivative of modelled reflectance was used to train the ANN. The trained ANN was then applied to the first-derivative of measured reflectance. For validation purpose the empirical relations and the trained ANN were applied to an independent data set obtained from a different field site. Estimated were compared to measured pigment concentrations. PLSR performed best on the calibration data set (in terms of r 2 and rmse). On the validation data set, inversion of the LIBERTY model achieved smallest rmse values for the 1 st year needles and SMLR for the 3 rd year needles.