Advances in laser technology have driven discoveries in atomic, molecular, and optical (AMO) physics and emerging applications, from quantum computers with cold atoms or ions, to quantum networks with solid-state color centers. This progress is motivating the development of a new generation of "programmable optical control" systems, characterized by criteria (C1) visible (VIS) and near-infrared (IR) wavelength operation, (C2) large channel counts extensible beyond 1000s of individually addressable atoms, (C3) high intensity modulation extinction and (C4) repeatability compatible with low gate errors, and (C5) fast switching times. Here, we address these challenges by introducing an atom control architecture based on VIS-IR photonic integrated circuit (PIC) technology. Based on a complementary metal-oxide-semiconductor (CMOS) fabrication process, this Atom-control PIC (APIC) technology meets the system requirements (C1)-(C5). As a proof of concept, we demonstrate a 16-channel silicon nitride based APIC with (5.8$\pm$0.4) ns response times and -30 dB extinction ratio at a wavelength of 780 nm. This work demonstrates the suitability of PIC technology for quantum control, opening a path towards scalable quantum information processing based on optically-programmable atomic systems.
Mode-locked lasers find their use in a large number of applications, for instance, in spectroscopic sensing, distance measurements, and optical communication. To enable widespread use of mode-locked lasers, their on-chip integration is desired. In recent years, there have been multiple demonstrations of monolithic III-V and heterogeneous III-V-on-silicon mode-locked lasers. However, the pulse energy, noise performance, and stability of these mode-locked lasers are limited by the relatively high linear and nonlinear waveguide loss, and the high temperature sensitivity of said platforms. Here, we demonstrate a heterogeneous III-V-on-silicon-nitride (III-V-on-SiN) electrically pumped mode-locked laser. SiN’s low waveguide loss, negligible two-photon absorption at telecom wavelengths, and small thermo-optic coefficient enable low-noise mode-locked lasers with high pulse energies and excellent temperature stability. Our mode-locked laser emits at a wavelength of 1.6 μm, has a pulse repetition rate of 3 GHz, a high on-chip pulse energy of ≈2 pJ, a narrow RF linewidth of 400 Hz, and an optical linewidth <1 MHz. The SiN photonic circuits are fabricated on 200 mm silicon wafers in a CMOS pilot line and include an amorphous silicon waveguide layer for efficient coupling from the SiN to the III-V waveguide. The III-V integration is done by micro-transfer-printing, a technique that enables the transfer of thin-film devices in a massively parallel manner on a wafer scale.
We demonstrate a III-V-on-silicon-nitride mode-locked laser through the heterogeneous integration of a semiconductor optical amplifier on a passive silicon nitride cavity using the technique of micro-transfer printing. Specifically, we explore the impact of the gain voltage and saturable absorber current on the locking stability of a tunable mode-locked laser. By manipulating these parameters, we demonstrate the control of the optical spectrum across a wide range of wavelengths spanning from 1530 nm to 1580 nm. Furthermore, we implement an optimization approach based on a Monte Carlo analysis aimed at enhancing the mode overlap within the gain region. This adjustment enables the achievement of a laser emitting a 23 nm wide spectrum while maintaining a defined 10 dB bandwidth for a pulse repetition rate of 3 GHz.
We demonstrate the growth of highly nonlinear crystalline thin films of N-benzyl-2-methyl-4-nitroaniline (BNA) with a controllable crystal orientation. These films are obtained by crystallizing the material in a temperature gradient. Through second-harmonic generation experiments at a fundamental wavelength of 1550 nm, we found a second-order nonlinearity of (153 ± 70) pm/V. This greatly exceeds the value of 54 pm/V for LiNbO3, the benchmark nonlinear crystal. Moreover, the crystalline films are grown on amorphous substrates with processing temperatures not exceeding 115°C, making them suitable for back-end photonic integration on a CMOS chip. We envisage the growth of BNA crystalline films on silicon nitride photonic integrated circuits, where a strong second-order nonlinearity is lacking.
We report on the atomic layer deposition of ZnO for interfacing with existing Si3N4 photonics which lacks 2nd-order nonlinear functionalities. We measure a χ(2) of 15 pm/V in line with a bulk ZnO crystal.
On-chip integration of optical comb sources is crucial in enabling their widespread use. Integrated photonic devices that can be mass-manufactured in semiconductor processing facilities offer a solution for the realization of miniaturized, robust, low-cost, and energy-efficient comb sources. Here, we review the state of the art in on-chip comb sources, their applications, and anticipated developments.
We demonstrate heterogeneously integrated passively mode-locked lasers by microtransfer printing III-V semiconductor optical amplifiers on a silicon nitride photonic chip. A dense and low-noise optical comb is generated, enabling unparalleled precision for on-chip spectroscopy.
Silicon nitride (SiN) is currently the most prominent CMOS-compatible platform for photonics at wavelengths <1 μm. However, realizing fast electro-optic (EO) modulators, the key components of any integrated optics platform, remains challenging in SiN. Modulators based on the plasma dispersion effect, as in silicon, are not available. Despite the fact that significant second-harmonic generation has been reported for silicon-rich SiN, no efficient Pockels effect-based modulators have been demonstrated. Here we report the back-end CMOS-compatible atomic layer deposition (ALD) of conventional second-order nonlinear crystals, zinc oxide, and zinc sulfide, on existing SiN waveguide circuits. Using these ALD overlays, we demonstrate EO modulation in ring resonators.