The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.
We study the interface between carbon nanotubes (CNTs) and surface-deposited titanium using electron microscopy and photoemission spectroscopy, supported by density functional calculations. Charge transfer from the Ti atoms to the nanotube and carbide formation is observed at the interface which indicates strong interaction. Nevertheless, the presence of oxygen between the Ti and the CNTs significantly weakens the Ti-CNT interaction. Ti atoms at the surface will preferentially bond to oxygenated sites. Potential sources of oxygen impurities are examined, namely oxygen from any residual atmosphere and pre-existing oxygen impurities on the nanotube surface, which we enhance through oxygen plasma surface pre-treatment. Variation in literature data concerning Ohmic contacts between Ti and carbon nanotubes is explained via sample pre-treatment and differing vacuum levels, and we suggest improved treatment routes for reliable Schottky barrier-free Ti-nanotube contact formation.
We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.
Density functional theory (DFT) calculations demonstrate neighboring Pt atoms can enhance the metal activity of NiCoP for hydrogen evolution reaction (HER). However, it remains a great challenge to link Pt and NiCoP. Herein, we introduced curvature of bowl-like structure to construct Pt/NiCoP interface by adding a minimal 1 ‰-molar-ratio Pt. The as-prepared sample only requires an overpotential of 26.5 and 181.6 mV to accordingly achieve the current density of 10 and 500 mA cm
Abstract Phosphor‐converted white light‐emitting diodes (LEDs) are currently playing key roles in the lighting and display industries and trigger urgent demands for the discovery of “good” phosphors with high quantum efficiency, improved thermal stability, and controllable excitation/emission properties. Herein, a general and efficient heterovalent substitution strategy is demonstrated in K 2 HfSi 3 O 9 :Eu 2+ achieved by Ln 3+ (Ln = Gd, Tb, Dy, Tm, Yb, and Lu) doping to optimize luminescence properties, and as an example, the Lu 3+ substitution leads to improvement of emission intensity and thermal stability, as well as tunable emission color from blue to cyan. The structural stability and Eu 2+ occupation via Lu 3+ doping have been revealed by the structural elaboration and density functional theory calculations, respectively. It is shown that heterovalent substitution allows predictive control of site preference of luminescent centers and therefore provides a new method to optimize the solid‐state phosphors for LEDs.
Recent theoretical predictions and angle-resolved photoemission spectroscopy measurements have shown that single crystal Cd3As2 is a three-dimensional topological Dirac semimetal possessing linear dispersions along all three momentum directions. Nanoscale topological Dirac semimetal structures have a large surface-to-volume ratio and provide a platform to explore its topological surface states. Here we report the synthesis of high quality Cd3As2 single crystalline nanoplates and nano-octahedrons via a vapor–solid growth mechanism. Triangular and hexagonal nanoplates with lateral dimensions ranging from several hundred nanometers to tens of micrometers are obtained. The top facets are (112), consistent with the natural cleavage plane of Cd3As2 single crystal. The synthesized Cd3As2 nano-octahedrons are enclosed by the {112} facets. A photovoltaic effect is demonstrated from a Cd3As2 nanoplate/metal electrode interface, suggesting potential applications in self-powered photodetection.
A Setaria-inflorescence-structured catalytic system with unique structural features and strong intrinsic dynamics is developed for highly efficient hydrogen evolution.
Abstract Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt x Cu y ‐based alloy, Pt 2 CuW 0.25 ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO) 6 as a reductant. Apart from the competitive activity, the obtained Pt 2 CuW 0.25 /C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt 2 CuW 0.25 /C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.