A hybrid III–V on silicon laser, integrating two intra-cavity ring resonators, is fabricated by using a wafer bonding technique. It achieves a thermal tuning range of 45 nm, with side mode suppression ratio higher than 40 dB.
In this work we present results from high performance silicon optical modulators produced within the two largest silicon photonics projects in Europe; UK Silicon Photonics (UKSP) and HELIOS. Two conventional MZI based optical modulators featuring novel self-aligned fabrication processes are presented. The first is based in 400nm overlayer SOI and demonstrates 40Gbit/s modulation with the same extinction ratio for both TE and TM polarisations, which relaxes coupling requirements to the device. The second design is based in 220nm SOI and demonstrates 40Gbits/s modulation with a 10dB extinction ratio as well modulation at 50Gbit/s for the first time. A ring resonator based optical modulator, featuring FIB error correction is presented. 40Gbit/s, 32fJ/bit operation is also shown from this device which has a 6um radius. Further to this slow light enhancement of the modulation effect is demonstrated through the use of both convention photonic crystal structures and corrugated waveguides. Fabricated conventional photonic crystal modulators have shown an enhancement factor of 8 over the fast light case. The corrugated waveguide device shows modulation efficiency down to 0.45V.cm compared to 2.2V.cm in the fast light case. 40Gbit/s modulation is demonstrated with a 3dB modulation depth from this device. Novel photonic crystal based cavity modulators are also demonstrated which offer the potential for low fibre to fibre loss. In this case preliminary modulation results at 1Gbit/s are demonstrated. Ge/SiGe Stark effect devices operating at 1300nm are presented. Finally an integrated transmitter featuring a III-V source and MZI modulator operating at 10Gbit/s is presented.
The information rate (IR) of a digital coherent transceiver is constrained by the inherent practical signal-to-noise ratio (SNR) limit. Coded modulation, which is the combination of multi-level modulation and forward error correction, aims to maximize the IR within this SNR envelope. While probabilistic constellation shaping has enhanced this methodology by providing an increase in IR over conventionally employed square quadrature amplitude modulation (QAM) formats, it is the ability to eloquently tune the per wavelength IR by varying the symbol probabilities that has gained this scheme significant traction within optical communications in recent years. As commercial line cards continue their evolution towards 100 GBd and to modulation formats beyond 64QAM, we discuss the merits of probabilistic shaping for high symbol rate digital coherent transceivers in the presence of a practical SNR limit.
We achieve 10Gbit/s transmissions using NRZ direct modulation on a hybrid III-V on Silicon laser. The device is fabricated by wafer-scale molecular bonding and exhibits a bit error rate less than 10 −4 up to 40km reach and a wavelength tunability over 35nm.
Recent progresses on hybrid integration of III-V on Silicon devices using a wafer bonding technique are presented as well as their applications for next generation of access, metropolitan and long haul networks.
We report a hybrid silicon optical gate based on a silicon waveguide with a III–V gain medium and two vertical grating couplers. The gate shows a wide optical bandwidth, high extinction ratio with low internal noise factor and low insertion loss. We further study the gate performance under packet-switched operation.
Silicon photonics is attracting large attention due to the promise of fabricating low-cost, compact circuits that integrate photonic and microelectronic elements. It can address a wide range of applications from short distance data communication to long haul optical transmission. Today, practical Si-based light sources are still missing, despite the recent demonstration of an optically pumped germanium laser. This situation has driven research to the heterogeneous integration of III-V semiconductors on silicon through wafer bonding techniques. This paper reports on recent advances on integrated hybrid InP/SOI lasers and transmitters using a wafer bonding technique made in particular at III-V Lab, France.
Recent advances on hybrid III-V/Si transmitters using a wafer bonding technique are reported. In particular, widely tunable III-V/Si lasers exhibiting 45 nm tuning range and hybrid tunable transmitters integrating a silicon Mach-Zehnder modulator are demonstrated.
We propose a bidirectional reflective semiconductor optical amplifier as promising solution for on-chip amplification with silicon photonic integrated circuit. Small form factor device, wide optical bandwidth and high optical fiber-to-fiber gain are presented.
Recent advances on hybrid III-V/Si lasers and semiconductor optical amplifiers using a wafer bonding technique are reported. In particular, III-V/Si lasers exhibiting C-band tuning range and high side-mode suppression ratio as well as high-gain semiconductor optical amplifiers are demonstrated.