Salmonella spp. are Gram-negative enteropathogenic bacteria that infect a variety of vertebrate hosts. Like any other living organism, protein secretion is a fundamental process essential for various aspects of Salmonella biology. Herein we report the identification and characterization of a horizontally acquired, autonomous and previously unreported secretion pathway. In Salmonella enterica serovar Typhimurium, this novel secretion pathway is encoded by STM1669 and STM1668, designated zirT and zirS, respectively. We show that ZirT is localized to the bacterial outer membrane, expected to adopt a compact beta-barrel conformation, and functions as a translocator for ZirS. ZirS is an exoprotein, which is secreted into the extracellular environment in a ZirT-dependent manner. The ZirTS secretion pathway was found to share several important features with two-partner secretion (TPS) systems and members of the intimin/invasin family of adhesions. We show that zirTS expression is affected by zinc; and that in vivo, induction of zirT occurs distinctively in Salmonella colonizing the small intestine, but not in systemic sites. Additionally, strong expression of zirT takes place in Salmonella shed in fecal pellets during acute and persistent infections of mice. Inactivation of ZirTS results in a hypervirulence phenotype of Salmonella during oral infection of mice. Cumulatively, these results indicate that the ZirTS pathway plays a unique role as an antivirulence modulator during systemic disease and is involved in fine-tuning a host-pathogen balance during salmonellosis.
For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.
Encapsulation of gentamicin in liposomes can be used to achieve intracellular delivery and broaden the clinical utility of this drug. We have previously described a novel, rationally designed, pH-sensitive liposomal carrier for gentamicin that has superior in vitro efficacy against intracellular infections compared to the efficacies of both free gentamicin and non-pH-sensitive liposomal controls. This liposomal carrier demonstrated pH-sensitive fusion that was dependent on the presence of unsaturated phosphatidylethanolamine (PE) and the pH-sensitive lipid N-succinyldioleoyl-PE. The pharmacokinetics and biodistribution of the free and liposomal gentamicin were examined in mice bearing a systemic Salmonella enterica serovar Typhimurium infection. Encapsulation of gentamicin in pH-sensitive liposomes significantly increased the concentrations of the drug in plasma compared to those of free gentamicin. Furthermore, the levels of accumulation of drug in the infected liver and spleen were increased by 153- and 437-fold, respectively, as a result of liposomal encapsulation. The increased accumulation of gentamicin in the liver and spleen effected by liposomal delivery was associated with 10(4)-fold greater antibacterial activity than that associated with free gentamicin in a murine salmonellosis model. These pH-sensitive liposomal antibiotic carriers with enhanced in vitro activity could be used to improve both in vivo intracellular drug delivery and biological activity.
Enteropathogenic Escherichia coli (EPEC) belongs to a family of related bacterial pathogens, including enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other human and animal diarrheagenic pathogens that form attaching and effacing (A/E) lesions on host epithelial surfaces. Bacterial secreted Esp proteins and a type III secretion system are conserved among these pathogens and trigger host cell signal transduction pathways and cytoskeletal rearrangements, and mediate intimate bacterial adherence to epithelial cell surfaces in vitro. However, their role in pathogenesis is still unclear. To investigate the role of Esp proteins in disease, mutations in espA and espB were constructed in rabbit EPEC serotype O103 and infection characteristics were compared to that of the wild-type strain using histology, scanning and transmission electron microscopy, and confocal laser scanning microscopy in a weaned rabbit infection model. The virulence of EspA and EspB mutant strains was severely attenuated. Additionally, neither mutant strain formed A/E lesions, nor did either one cause cytoskeletal actin rearrangements beneath the attached bacteria in the rabbit intestine. Collectively, this study shows for the first time that the type III secreted proteins EspA and EspB are needed to form A/E lesions in vivo and are indeed virulence factors. It also confirms the role of A/E lesions in disease processes.
The host-pathogen interaction involves a myriad of initiations and responses from both sides. Bacterial pathogens such as enteropathogenic Escherichia coli (EPEC) and Salmonella enterica have numerous virulence factors that interact with and alter signaling components of the host cell to initiate responses that are beneficial to pathogen survival and persistence. The study of Salmonella and EPEC infection reveals intricate connections between host signal transduction, cytoskeletal architecture, membrane trafficking, and cytokine gene expression. The emerging picture includes elements of molecular mimicry by bacterial effectors and bacterial subversion of typical host events, with the result that EPEC is able to survive and persist in an extracellular milieu, while Salmonella establishes an intracellular niche and is able to spread systemically throughout the host. This review focuses on recent advances in our understanding of the signaling events stemming from the host-pathogen interactions specific to Salmonella and EPEC.