Abstract Chickens and guinea fowl are commonly reared in Gambian homes as affordable sources of protein. Using standard microbiological techniques, we obtained 68 caecal isolates of Escherichia coli from ten chickens and nine guinea fowl in rural Gambia. After Illumina whole-genome sequencing, 28 sequence types were detected in the isolates (four of them novel), of which ST155 was the most common (22/68, 32%). These strains span four of the eight main phylogroups of E. coli , with phylogroups B1 and A being most prevalent. Nearly a third of the isolates harboured at least one antimicrobial resistance gene, while most of the ST155 isolates (14/22, 64%) encoded resistance to ≥3 classes of clinically relevant antibiotics, as well as putative virulence factors, suggesting pathogenic potential in humans. Furthermore, hierarchical clustering revealed that several Gambian poultry strains were closely related to isolates from humans. Although the ST155 lineage is common in poultry from Africa and South America, the Gambian ST155 isolates belong to a unique cgMLST cluster comprised of closely related (38-39 alleles differences) isolates from poultry and livestock from sub-Saharan Africa—suggesting that strains can be exchanged between poultry and livestock in this setting. Continued surveillance of E. coli and other potential pathogens in rural backyard poultry from sub-Saharan Africa is warranted. Author notes All supporting data and protocols have been provided within the article or as supplementary data files. Eleven supplementary figures and eight supplementary files are available with the online version of this article. Data summary The genomic assemblies for the isolates reported here are available for download from EnteroBase ( http://enterobase.warwick.ac.uk/species/index/ecoli ) and the EnteroBase assembly barcodes are provided in File S2. Sequences have been deposited in the NCBI SRA, under the BioProject ID: PRJNA616250 and accession numbers SAMN14485281 to SAMN14485348 (File S2). Assemblies have been deposited in GenBank under the BioProject ID: PRJNA616250 and accession numbers CP053258 and CP053259 . Impact statement Domestic birds play a crucial role in human society, in particular contributing to food security in low-income countries. Many households in Sub-Saharan Africa rear free-range chickens and guinea fowl, which are often left to scavenge for feed in and around the family compound, where they are frequently exposed to humans, other animals and the environment. Such proximity between backyard poultry and humans is likely to facilitate transmission of pathogens such as Escherichia coli or antimicrobial resistance between the two host species. Little is known about the population structure of E. coli in rural chickens and guinea fowl, although this information is needed to contextualise the potential risks of transmission of bacterial strains between humans and rural backyard poultry. Thus, we sought to investigate the genomic diversity of E. coli in backyard poultry from rural Gambia.
Abstract Real-time genomics through nanopore sequencing holds the promise of fast antibiotic resistance prediction, but concerns remain about its accuracy. We here show that real-time genomics has the potential to improve clinical practice based on a multi-drug resistant Klebsiella pneumoniae bloodstream infection. In contrast to established diagnostics, real-time genomics can accurately identify complex antibiotic resistance patterns conferred through newly discovered low-abundance resistance genes, potentially significantly impacting clinical decision-making and patient outcome.
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Chickens and guinea fowl are commonly reared in Gambian homes as affordable sources of protein. Using standard microbiological techniques, we obtained 68 caecal isolates of Escherichia coli from ten chickens and nine guinea fowl in rural Gambia. After Illumina whole-genome sequencing, 28 sequence types were detected in the isolates (four of them novel), of which ST155 was the most common (22/68, 32%). These strains span four of the eight main phylogroups of E. coli , with phylogroups B1 and A being most prevalent. Nearly a third of the isolates harboured at least one antimicrobial resistance gene, while most of the ST155 isolates (14/22, 64%) encoded resistance to ≥3 classes of clinically relevant antibiotics, as well as putative virulence factors, suggesting pathogenic potential in humans. Furthermore, hierarchical clustering revealed that several Gambian poultry strains were closely related to isolates from humans. Although the ST155 lineage is common in poultry from Africa and South America, the Gambian ST155 isolates sit within a tight genomic cluster (100 alleles difference) of strains from poultry and livestock in sub-Saharan Africa (the Gambia, Uganda and Kenya). Continued surveillance of E. coli and other potential pathogens in rural backyard poultry from sub-Saharan Africa is warranted.
Abstract Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location 1,2 . The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa ( n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59–1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient.
Microbiology Society journals contain high-quality research papers and topical review articles. We are a not-for-profit publisher and we support and invest in the microbiology community, to the benefit of everyone. This supports our principal goal to develop, expand and strengthen the networks available to our members so that they can generate new knowledge about microbes and ensure that it is shared with other communities.
Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson's index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.
In 2011, two years after the introduction of 7-valent Pneumococcal conjugate vaccine (PCV7), the Gambian immunization programme replaced PVC7 with PCV13 (13-valent). Our objective was to assess the additional impact of PCV13 on prevalence of pneumococcal nasopharyngeal carriage.We recruited healthy Gambian infants who had received three PCV doses. Nasopharyngeal swabs were collected from infants and their mothers during two cross-sectional surveys (CSS) conducted in infants vaccinated with PCV7 (CSS1) and vaccinated with PCV13 (CSS2). Pneumococci were isolated and serotyped following standardized methods. Whole genome sequencing was performed on non-typable pneumococcus isolated in CSS1 and CSS2.339 and 350 infants and their mothers were recruited in CSS1 and CSS2, respectively. Overall prevalence of pneumococcal carriage was 85.4% in infants. Among infants, prevalence of vaccine type (VT) carriage was lower in CSS2 [9.4% versus 4.9% (p=0.025) for PCV7-VT; 33.3% versus 18.3% (p<0.001) for PCV13-VT and 23.9% versus 13.7% (p=0.001) for the 6 additional serotypes included in PCV13]. At CSS2, there was a decrease of serotypes 6A (from 15.3% to 5.7%, p<0.001) and 19F (from 5.6% to 1.7%, p=0.007), and an increase of non-typable pneumococci (0.3-6.0%, p<0.001), most of which (82.4%) were from typable serotype backgrounds that had lost the ability to express a capsule. Prevalence of overall and VT carriage in mothers was similar in CSS1 and CSS2.Replacing PCV7 for PCV13 rapidly decreased prevalence of VT carriage among vaccinated Gambian infants. An indirect effect in mothers was not observed yet. Vaccine-driven selection pressure may have been responsible for the increase of non-typable isolates.
Abstract Background For long-stay patients on the adult intensive care unit, the gut microbiota plays a key role in determining the balance between health and disease. However, it remains unclear which ICU patients might benefit from interventions targeting the gut microbiota or the pathogens therein. Methods We undertook a prospective observational study of twenty-four ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Results Two-thirds of patients experienced a marked drop in gut microbial diversity (to an inverse Simpson’s index of <4) at some stage during their stay in ICU, often accompanied by absence or loss of beneficial commensal bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but administration of other antibiotics, including piperacillin-tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium . In some patients we also saw domination of the gut microbiota by commensal organisms, such as Methanobrevibacter smithii . Conclusions Our results support a role for metagenomic surveillance of the gut microbiota and pave the way for patient-specific interventions that maintain or restore gut microbial diversity in the ICU.