The microbial ecology of Escherichia coli in the vertebrate gut
67
Citation
328
Reference
10
Related Paper
Citation Trend
Abstract:
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.Keywords:
Model Organism
Abstract: Drosophila melanogaster, (species of Fly; order Diptera; family Drosophilidae) usedas model organism and is widely used for various immunobiologically studies especially genetics, animal physiology along with microbial pathogenesis etc. It is one of the most typically used organism in invertebrates that is easy to care, breeds quickly and lays many eggs. In this study, our group collected literature about drosophila (invertebrates) related to the prevalence of disorders which effects metabolism and other cellular functions. In view of this, this organism is used as model organism for various biological studies.
Model Organism
Biological organism
Melanogaster
Cite
Citations (0)
Model Organism
Melanogaster
Cite
Citations (1)
Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.
Model Organism
Biological organism
Component (thermodynamics)
Cite
Citations (69)
Background Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. Methodology/Principal Findings In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. Conclusions/Significance The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.
Model Organism
Cite
Citations (165)
Danio
Model Organism
Nutrigenomics
Functional Genomics
Cite
Citations (108)
The complexity of food organism interactions necessitates the use of model organisms to understand physiological and pathological processes. In nutrition research, model organisms were initially used to understand how macro and micronutrients are handled in the organism. Currently, in nutritional systems biology, models of increasing complexity are needed in order to determine the global organisation of a biological system and the interaction with food and food components. Originally driven by genetics, certain model organisms have become most prominent. Model organisms are more accessible systems than human beings and include bacteria, yeast, flies, worms, and mammals such as mice. Here, the origin and the reasons to become the most prominent models are presented. Moreover, their applicability in molecular nutrition research is illustrated with selected examples.
Model Organism
Biological organism
Model system
Cite
Citations (10)
Many model organisms like yeast (Saccharomyces), Drosophila, zebrafish, mouse, rats, hamsters, rabbits, cat, chicken, monkey etc. are being used in biomedical research. Invertebrate models like yeast, Drosophila etc. are used to study genetic functions. On the other hand vertebrate model systems like mouse, rats, hamsters, rabbits, cat, chicken, monkey preferred models for research in diseased conditions when compared to invertebrate model organisms but vertebrate models are the more complex model systems. Zebrafish though a vertebrate with physiological and anatomical characteristics of higher organism it also provides the ease of use of a lower organisms. Hence zebrafish offers an important model system which can connect development, disease, and toxicological studies.
Model Organism
Model system
Animal model
genetic model
Cite
Citations (2)
Saccharomyces cerevisiae is the simplest eukaryotic model organism and has made countless contributions to cell biology. The ease with which it can be genetically manipulated has made it a favourite organism among technologists for developing methods for large-scale analysis based on reverse genetics. Consequently, more genomewide datasets describing aspects of gene and protein biology are available for yeast than for any other organism. This has led to the pioneering of many computational analysis techniques using yeast data. Here, we make a brief survey of yeast physical and genetic interaction networks, highlighting major experimental and computational achievements first described in this organism.
Model Organism
Biological organism
Cite
Citations (10)
Model Organism
Cite
Citations (36)