Capn4 belongs to a family of calpains that participate in a wide variety of biological functions, but little is known about the role of Capn4 in cardiac disease. Here, we show that the expression of Capn4 was significantly increased in Angiotensin II (Ang II)-treated cardiomyocytes and Ang II-induced cardiac hypertrophic mouse hearts. Importantly, in agreement with the Capn4 expression patterns, the maximal calpain activity measured in heart homogenates was elevated in Ang II-treated mice and oral coadministration of SNJ-1945 (calpain inhibitor) attenuated the total calpain activity measured in vitro. Functional assays indicated that overexpression of Capn4 obviously aggravated Ang II-induced cardiac hypertrophy, whereas Capn4 knockdown resulted in the opposite phenotypes. Further investigation demonstrated that Capn4 maintained the activation of the insulin-like growth factor (IGF)-AKT signalling pathway in cardiomyocytes by increasing c-Jun expression. Mechanistic investigations revealed that Capn4 directly bound and stabilized c-Jun and knockdown of Capn4 increased the ubiquitination level of c-Jun in cardiomyocytes. Additionally, our results demonstrated that the antihypertrophic effect of Capn4 silencing was partially dependent on the inhibition of c-Jun. Overall, these data suggested that Capn4 contributes to cardiac hypertrophy by enhancing the c-Jun-mediated IGF-AKT signalling pathway and could be a potential therapeutic target for hypertrophic cardiomyopathy.
Abstract Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. RPW8 domain-containing “helper” NLRs (RNLs) are required by many “sensor” NLRs. Our crystal structure of the RNL N REQUIREMENT GENE 1.1 (NRG1.1) N-terminal signaling domain resembled that of the resting state plant resistosome-forming HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) and the animal MIXED-LINEAGE KINASE-LIKE (MLKL) cation channel. Active NRG1.1 oligomerized, was enriched in plasma membrane puncta and conferred cytoplasmic Ca 2+ influx in plant and human HeLa cells. NRG1.1-dependent Ca 2+ influx and cell death were sensitive to Ca 2+ channel blockers. Ca 2+ influx and cell death mediated by NRG1.1 and ACTIVATED DISEASE RESISTANCE 1 (ADR1), another RNL, required conserved negatively charged N-terminal residues. Thus, RNLs apparently form influx channels to directly regulate cytoplasmic [Ca 2+ ] and consequent cell death. One Sentence Summary A specific class of plant immune receptors function as calcium-permeable channels upon activation to induce cell death.
Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5′-diphosphate–ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR–immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3′cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.
Background Tuberculosis (TB) is a disease caused by the chronic and continuous infection of the pathogen Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis is an intracellular bacterial pathogen and is eliminated mainly through CD4+ effector Th cells. M. tuberculosis induces regulatory T lymphocytes (Tregs) that mediate immune suppression by cell-to-cell contact or by secreting cytokines such as transforming growth factor-β (TGF-β). To understand the role of regulatory T-cells in the pathogenesis of TB, we have measured the in vivo frequency of regulatory T-cells and associated in vivo cytokine production in pulmonary tuberculosis patients. Methodology/Principal Findings In this study, we analyzed blood samples from 3 different populations (Group 1: patients with active TB, Group 2: patients recovered from TB and Group 3: healthy controls). We measured natural regulatory T-cell expression in peripheral blood using flow cytometry, and levels of blood serum IFN-γ and TGF-β1 using ELISA. The in vivo function of inductive regulatory T cells was mainly indicated by the expression of IFN-γ, TGF-β1, etc. Frequencyof natural regulatory T cells and inductive regulatory T cells in the peripheral blood samples from Group 1 patients were all significantly higher (P<0.05) than those from Groups 2 and 3. Conclusion/Significance Our results indicate that frequency of natural regulatory T cells and inductive regulatory T cells are significantly higher in the peripheral blood of patients with active pulmonary tuberculosis. These findings have potential application in improving TB diagnostic methods.
Summary Activation of nucleotide‐binding leucine‐rich repeat receptors (NLRs) results in immunity and a localized cell death. NLR cell death activity requires oligomerization and in some cases plasma membrane (PM) localization. The exact mechanisms underlying PM localization of NLRs lacking predicted transmembrane domains or recognizable lipidation motifs remain elusive. We used confocal microscopy, genetically encoded molecular tools and protein‐lipid overlay assays to determine whether PM localization of members of the Arabidopsis HeLo‐/RPW8‐like domain ‘helper’ NLR (RNL) family is mediated by the interaction with negatively charged phospholipids of the PM. Our results show that PM localization and stability of some RNLs and one CC‐type NLR (CNL) depend on the direct interaction with PM phospholipids. Depletion of phosphatidylinositol‐4‐phosphate from the PM led to a mis‐localization of the analysed NLRs and consequently inhibited their cell death activity. We further demonstrate homo‐ and hetero‐association of members of the RNL family. Our results provide new insights into the molecular mechanism of NLR localization and defines an important role of phospholipids for CNL and RNL PM localization and consequently, for their function. We propose that RNLs interact with anionic PM phospholipids and that RNL‐mediated cell death and immune responses happen at the PM.
Intracellular plant immune receptors, termed NLRs (Nucleotide-binding Leucine-rich repeat Receptors), confer effector-triggered immunity. Sensor NLRs are responsible for pathogen effector recognition. Helper NLRs function downstream of sensor NLRs to transduce signaling and induce cell death and immunity. Activation of sensor NLRs that contain TIR (Toll/interleukin-1receptor) domains generates small molecules that induce an association between a downstream heterodimer signalosome of EDS1 (EnhancedDisease Susceptibility 1)/SAG101 (Senescence-AssociatedGene 101) and the helper NLR of NRG1 (NRequired Gene 1). Autoactive NRG1s oligomerize and form calcium signaling channels largely localized at the plasma membrane (PM). The molecular mechanisms of helper NLR PM association and effector-induced NRG1 oligomerization are not well characterized. We demonstrate that helper NLRs require positively charged residues in their N-terminal domains for phospholipid binding and PM association before and after activation, despite oligomerization and conformational changes that accompany activation. We demonstrate that effector activation of a TIR-containing sensor NLR induces NRG1 oligomerization at the PM and that the cytoplasmic pool of EDS1/SAG101 is critical for cell death function. EDS1/SAG101 cannot be detected in the oligomerized NRG1 resistosome, suggesting that additional unknown triggers might be required to induce the dissociation of EDS1/SAG101 from the previously described NRG1/EDS1/SAG101 heterotrimer before subsequent NRG1 oligomerization. Alternatively, the conformational changes resulting from NRG1 oligomerization abrogate the interface for EDS1/SAG101 association. Our data provide observations regarding dynamic PM association during helper NLR activation and underpin an updated model for effector-induced NRG1 resistosome formation.
Copper is one of the essential microelements in human. It involves in many physiological functions,such as anti-oxidation,anti-tumor and maintaining normal immune functions.Copper is also responsible for the recovery of diseases.This review mainly summarized the advance on the relationship between copper and some human diseases including cardiology,tumor and hyperlipemia.
Abstract Some plant NLR immune receptors are encoded in head-to-head pairs that function together. Alleles of the NLR pair CHS3/CSA1 form three clades. The clade 1 sensor CHS3 contains an integrated domain (ID) with homology to regulatory domains, which is lacking in clades 2 and 3. We defined two regulatory modes for CHS3/CSA1 pairs. One is likely mediated by effector binding to the clade 1 ID of CHS3 and the other relies on CHS3/CSA1 pairs from all clades detecting effector modification of an associated pattern recognition receptor. We suggest that an ancestral Arabidopsis CHS3/CSA1 pair gained a second recognition specificity and regulatory mechanism through ID acquisition, while retaining its original specificity as a ‘Guard’ against perturbation of pattern recognition receptor targeting by a pathogen effector. This likely comes with a cost, since both ID and non-ID alleles of the pair persist in diverse Arabidopsis populations through balancing selection. Summary We dissect a novel case where two regulatory modes emerged across three clades of the co-evolved CHS3/CSA1 plant immune receptor pairs, which features recruitment of an integrated domain (ID) into the clade 1 CHS3 alleles. Pre- and post-ID integration alleles maintain functionality; balancing selection maintains both in the Arabidopsis pan-genome.
Purpose: To determine the clinical features, laboratory findings, antibiotic treatment, and outcomes of neonatal listeriosis in a specialized tertiary hospital in Wuhan, China. Patients and Methods: We retrospectively analyzed the medical records of patients diagnosed with neonatal listeriosis at Maternal and Child Health Hospital of Hubei Province from January 2015 to December 2022. Listeriosis was indicated by positive culture for Listeria monocytogenes (LM). Results: A total of 11 cases were included in our study. The incidence rate of neonatal listeriosis was 2.06 per 100,000 live births. Seventy-three percent of the cases were born prematurely, caused early onset sepsis. Respiratory distress (100%) was the most common and earliest symptom, followed by fever (64%) and rashes (27%). The levels of C-reactive protein (CRP) and procalcitonin (PCT) were elevated in 100% of the cases. The median time-to-positivity (TTP) of the culture was 15 hours (range 9– 28hours). Of the 11 neonates, 6 were cured, 2 showed improvement, and 3 died, with a mortality rate of 27%. There were statistically significant differences in Apgar score at 5 minutes (p=0.037) and CRP (p=0.025) between the survival group and fatality group. Ampicillin was sensitive to LM isolates and effective for therapy if initiated early. Conclusion: Neonatal listeriosis is a rare but severe infection with a high mortality rate. Early identification and appropriate use of effective antibiotics are particularly critical for achieving positive outcomes. Apgar score and CRP are relevant indices for prognosis. Ampicillin is the first-line therapy and can be empirically administered to neonates suspected of having listeriosis. Keywords: neonatal listeriosis, Listeria monocytogenes, clinical features, antibiotic treatment, Apgar score, C-reactive protein