Fibrosis (extracellular matrix accumulation) is the final end point in diabetic cardiomyopathy. The current study evaluated the therapeutic effects of the antifibrotic hormone relaxin (RLX) in streptozotocin-treated transgenic mRen-2 rats, which undergo pathological and functional features similar to human diabetes. Twelve-week-old hyperglycemic mRen-2 rats, normoglycemic control rats, and animals treated with recombinant human gene-2 (H2) RLX from wk 10–12 were assessed for various measures of left ventricular (LV) fibrosis, hemodynamics, and function, while the mechanism of RLX’s actions was also determined. Hyperglycemic mRen-2 rats had increased LV collagen concentration (fibrosis) and gelatinase activity (all P < 0.05 vs. controls) but equivalent levels of interstitial collagenase and tissue inhibitor of metalloproteinase-1 to that measured in control rats. The increased LV fibrosis associated with diabetic animals led to significant alterations in the E/A wave ratio and E-wave deceleration time (both P < 0.05 vs. controls) in the absence of blood pressure changes, reflective of myocardial stiffness and LV diastolic dysfunction. H2-RLX treatment of diabetic rats led to significant decreases in interstitial and total LV collagen deposition (both P < 0.05 vs. diabetic group), resulting in decreased myocardial stiffness and improved LV diastolic function, without affecting nondiabetic animals. The protective effects of H2-RLX in diabetic rats were associated with a reduction in mesenchymal cell differentiation and tissue inhibitor of metalloproteinase-1 expression in addition to a promotion of extracellular matrix-degrading matrix metalloproteinase-13 (all P < 0.05 vs. diabetic group) but were independent of blood pressure regulation. These findings demonstrate that RLX is an antifibrotic with rapid-occurring efficacy and may represent a novel therapy for the treatment of diabetes.
ABSTRACT Background Calciprotein particles (CPPs), colloidal mineral-protein nanoparticles, have emerged as potential mediators of phosphate toxicity in dialysis patients, with putative links to vascular calcification, endothelial dysfunction and inflammation. We hypothesized that phosphate binder therapy with sucroferric oxyhydroxide (SO) would reduce endogenous CPP levels and attenuate pro-calcific and pro-inflammatory effects of patient serum towards human vascular cells in vitro. Methods This secondary analysis of a randomised controlled crossover study compared the effect of 2-week phosphate binder washout with high-dose (2000 mg/day) and low-dose (250 mg/day) SO therapy in 28 haemodialysis patients on serum CPP levels, inflammatory cytokine/chemokine arrays and human aortic smooth muscle cell (HASMC) and coronary artery endothelial cell (HCAEC) bioassays. Results In our cohort (75% male, 62 ± 12 years) high-dose SO reduced primary (amorphous) and secondary (crystalline) CPP levels {−62% [95% confidence interval (CI) −76 to −44], P < .0001 and −38% [−62 to −0.14], P < .001, respectively} compared with washout. Nine of 14 plasma cytokines/chemokines significantly decreased with high-dose SO, with consistent reductions in interleukin-6 (IL-6) and IL-8. Exposure of HASMC and HCAEC cultures to serum of SO-treated patients reduced calcification and markers of activation (IL-6, IL-8 and vascular cell adhesion protein 1) compared with washout. Serum-induced HASMC calcification and HCAEC activation was ameliorated by removal of the CPP-containing fraction from patient sera. Effects of CPP removal were confirmed in an independent cohort of chronic kidney disease patients. Conclusions High-dose SO reduced endogenous CPP formation in dialysis patients and yielded serum with attenuated pro-calcific and inflammatory effects in vitro.
Although the kidney has capacity to repair after mild injury, ongoing or severe damage results in scarring (fibrosis) and an associated progressive loss of kidney function. However, despite its universal significance, evidence highlights a population based heterogeneity in the trajectory of chronic kidney disease (CKD) in these patients. To explain the heterogeneity of the CKD phenotype requires an understanding of the relevant risk factors for fibrosis. These factors include both the extrinsic nature of injury, and intrinsic factors such as age, gender, genetics, and perpetual activation of fibroblasts through priming. In many cases an additional level of regulation is provided by epigenetic mechanisms which integrate the various pro-fibrotic and anti-fibrotic triggers in fibrogenesis. In this review we therefore examine the various molecular and structural changes of fibrosis, and how they are influenced by extrinsic and intrinsic factors. Our aim is to provide a unifying hypothesis to help explain the transition from acute to CKD.
Calciprotein particles (CPP) are nanoscale mineralo-protein aggregates that help stabilize excess mineral in the circulation. We examined the relationship between CPP and bone mineral density in Fabry disease patients. We found an inverse correlation with total hip and femoral neck density, but none with lumbar spine. Calciprotein particles (CPP) are colloidal mineral-protein complexes made up primarily of the circulating glycoprotein fetuin-A, calcium, and phosphate. They form in extracellular fluid and facilitate the stabilization, transport, and clearance of excess minerals from the circulation. While most are monomers, they also exist in larger primary (CPP-I) and secondary (CPP-II) form, both of which are reported to be raised in pathological states. This study sought to investigate CPP levels in the serum of patients with Fabry disease, an X-linked systemic lysosomal storage disorder that is associated with generalized inflammation and low bone mineral density (BMD). We compared serum CPP-I and CPP-II levels in 59 patients with Fabry disease (37 female) with levels in an age-matched healthy adult cohort (n=28) and evaluated their association with BMD and biochemical data obtained from routine clinical review. CPP-I and CPP-II levels were higher in male Fabry disease patients than female sufferers as well as their corresponding sex- and age-matched controls. CPP-II levels were inversely correlated with BMD at the total hip and femoral neck, but not the lumbar spine. Regression analyses revealed that these associations were independent of common determinants of BMD, but at the femoral neck, a significant association was only found in female patients. Low hip BMD was associated with high CPP-II in patients with Fabry disease, but further work is needed to investigate the relevance of sex-related differences and to establish whether CPP measurement may aid assessment of bone disease in this setting.
The accumulation of fetuin-A-containing calciprotein particles (CPP) in the serum of patients with renal disease and those with chronic inflammation may be involved in driving sterile inflammation and extraosseous mineral deposition. We previously showed that both fetuin-A and CPP were present in the peritoneal dialysis (PD) effluent of stable PD patients. It is unknown whether different PD fluids might affect the formation of CPP in vivo.Peritoneal effluent from 12 patients was collected after a 6-hour dwell with 7 different commercial PD fluids. Calciprotein particles and inflammatory cytokines were measured by flow cytometry.High inter-subject variability in CPP concentration was observed. Peritoneal dialysis fluids containing 1.75 mmol/L calcium were associated with enhanced formation of CPP in vivo, compared with fluids containing 1.25 mmol/L calcium. Osmotic agent, fluid pH, and glucose concentration did not affect CPP formation. Peritoneal dialysis effluent CPP levels were not associated with changes in inflammatory cytokines.High calcium-containing PD fluids favor intraperitoneal CPP formation. This finding may have relevance for future PD fluid design.
The close association between cardiovascular pathology and renal dysfunction are well documented and significant. Patients with conventional risk factors for cardiovascular disease like diabetes and hypertension also suffer renal dysfunction. This is unsurprising if the kidney is simply regarded as a 'modified blood vessel' and thus traditional risk factors will affect both systems. Consistent with this, it is relatively easy to comprehend how patients with either sudden or gradual cardiac and or vascular compromise have changes in both renal haemodynamic and regulatory systems. However, patients with pure or primary renal dysfunction, also have metabolic changes (e.g. oxidant stress, inflammation, nitric oxide or endocrine changes) that affect the cardiovascular system. Thus cardiovascular and renal systems are intimately, bidirectionally and inextricably linked. Whilst we understand several of these links, some of the mechanisms for these connections remain incompletely explained. Animal models of cardiovascular and renal disease allow us to explore such mechanisms, and more importantly, potential therapeutic strategies. In this article we review various experimental models used, and examine critically how representative they are of the human condition
Summary at a Glance The present review discusses the nutritional aspects of Renal Supportive Care (RSC) in terminally ill end-stage renal disease patients (ESRD) focusing on high symptom burden patients and those with end-stage renal disease being managed without dialysis.
Abstract Introduction Hemodialysis (HD) with medium cut‐off (MCO) dialyzers may expand molecular clearance, predominantly larger middle molecules (molecular weight 25–60 kDa). However, the impact of MCO dialyzers on long‐term clearance of various other components of the uremic milieu is unknown. The tRial Evaluating Mid cut‐Off Value membrane clearance of Albumin and Light chains in HemoDialysis patients (REMOVAL‐HD) provided an opportunity to assess the effect of MCO dialyzers on protein‐bound uremic toxins and novel markers of mineral metabolism. Methods This exploratory sub‐study of REMOVAL‐HD evaluated changes in protein‐bound solutes (total and free indoxyl sulfate [IS] and p ‐cresyl sulfate [PCS]) and mineral metabolism markers (intact fibroblast growth factor‐23 [iFGF23], fetuin‐A and endogenous calciprotein particles [CPP‐1 and CPP‐2]). Mid‐week, pre‐HD serum samples were collected at baseline and after 12 and 24 weeks of MCO use in stable adult patients. Change from baseline to Week 12 and 24 was estimated using linear mixed effects models. Findings Eighty‐nine participants were studied (mean age 67 ± 15 years, 38% female, 51% diabetic, median urine output 200 ml/24 h). Serum iFGF23 was reduced at Week 12 compared to baseline (−26.8% [95%CI −39.7, −11.1], p = 0.001), which was sustained at Week 24 (−21.7% [95%CI ‐35.7, −4.5], p = 0.012). There was no significant change in serum IS, PCS, fetuin‐A, CPP‐1, or CPP‐2. Discussion The use of a MCO dialyzer over 24 weeks was associated with a sustained reduction in FGF23, while other measured components of the uremic milieu were not significantly altered. Further studies are required to determine whether FGF23 reduction is associated with improved patient outcomes.