1 Carbohydrate storage has been attributed an important role in the ability to tolerate shade, yet empirical support for this idea has been patchy. We asked if carbohydrate-storage patterns of seedling evergreens in low light are correlated with variation in shade tolerance, and how these patterns change with seedling size. 2 We measured biomass distribution and total non-structural carbohydrate (NSC) concentrations of leaves, stems and roots of two seedling size classes of six evergreens growing in a temperate rainforest understorey. Light requirements of the six species were quantified by calculating the 10th percentile of the distribution of established seedlings in relation to canopy openness. 3 NSC averaged 14% of the dry mass of small seedlings (40–60 mm tall), and 22% of that of large seedlings (400–600 mm tall). This difference was entirely due to variation in starch reserves, which on average accounted for 60% of NSC in small seedlings and 84% in large seedlings. 4 NSC concentrations of leaves and roots (but not stems) of large seedlings were negatively correlated with species' shade tolerance, but no such pattern was found in small seedlings. Leaf NSC on an area basis was not related to species' shade tolerance in either size class. 5 Partitioning of the NSC pool between leaves, stems and roots of small seedlings was closely related to variation in shade tolerance. Small seedlings of shade-tolerant species had a relatively low proportion of their NSC pool in leaves and a high proportion in roots. This is likely to ensure the retention of the greater part of the NSC pool even in the event of extensive defoliation, and the availability of reserves to replace lost leaves. In contrast, the large leaf-mass fraction of large seedlings of shade-tolerant species (46–47% of biomass) meant that these plants had a large proportion of their NSC pool in foliage. 6 Results suggest that, in Chilean rainforest evergreens, any adaptive relationship of carbohydrate storage with shade tolerance may be confined to young seedlings, involving interspecific variation in the partitioning of reserves between leaves and other organs, rather than especially high NSC concentrations in shade-tolerant species.
Insect herbivory is thought to favour carbon allocation to storage in juveniles of shade‐tolerant trees. This argument assumes that insect herbivory in the understorey is sufficiently intense as to select for storage; however, understoreys might be less attractive to insect herbivores than canopy gaps, because of low resource availability and – at temperate latitudes – low temperatures. Although empirical studies show that shade‐tolerant species in tropical forests do allocate more photosynthate to storage than their light‐demanding associates, the same pattern has not been consistently observed in temperate forests. Does this reflect a latitudinal trend in the relative activity of insect herbivory in gap versus understorey environments? To date there has been no global review of the effect of light environment on insect herbivory in forests. We postulated that if temperature is the primary factor limiting insect herbivory, the effect of gaps on rates of insect herbivory should be more evident in temperate than in tropical forests; due to low growing season temperatures in the oceanic temperate forests of the Southern Hemisphere, the effect of gaps on insect herbivory rates should in turn be stronger there than in the more continental temperate climates of the Northern Hemisphere. We examined global patterns of insect herbivory in gaps versus understories through meta‐analysis of 87 conspecific comparisons of leaf damage in contrasting light environments. Overall, insect herbivory in gaps was significantly higher than in the understorey; insect herbivory was 50% higher in gaps than in understoreys of tropical forests but did not differ significantly between gaps and understories in temperate forests of either hemisphere. Results are consistent with the idea that low resource availability – and not temperature – limits insect herbivore activity in forest understoreys, especially in the tropics, and suggest the selective influence of insect herbivory on late‐successional tree species may have been over‐estimated.
Remaining total and ash-free dry mass, nitrogen (N) content, phosphorus (P) content, and carbon to nitrogen ratio (C/N) of the litter of eight tree species in the Arboretum of the Universidad Austral de Chile, expressed as % of the initial content. Initial values correspond to winter time (0). Harvests were performed in spring (4), summer (7) and autumn (9). Constants of decay are estimated.
Aim Two alternative hypotheses attempt to explain the upper elevation limit of tree lines world-wide, the carbon-limitation hypothesis (CLH) and the growth-limitation hypothesis (GLH); the altitudinal decrease of temperature is considered the driver constraining either carbon gain or growth. Using a widely distributed tree line species (Nothofagus pumilio) we tested whether tree line altitude is explained by the CLH or the GLH, distinguishing local from global effects. We elaborated expectations based on most probable trends of carbon charging with altitude according to both hypotheses, considering the alternative effects of drought. Location Two climatically contrasting tree line ecotones in the southern Andes of Chile: Mediterranean (36°54′ S) and Patagonia (46°04′ S). Methods At both locations, 35–50 trees of different ages were selected at each of four altitudes (including tree line), and stem and root sapwood tissues were collected to determine non-structural carbohydrate (NSC) concentrations. NSC accumulates whenever growth is more limited than photosynthesis. An altitudinal increase in NSCs means support for the GLH, while the opposite trend supports the CLH. We also determined stable carbon isotope ratios (δ13C) to examine drought constraints on carbon gain. Results NSC concentrations were positively correlated with altitude for stem tissue at the Mediterranean and root sapwood tissue at the Patagonia site. No depletion of NSC was found at either site in either tissue type. For both tissues, mean NSC concentrations were higher for the Patagonia site than for the Mediterranean site. Mean root sapwood NSC concentration values were five times higher than those of the corresponding stem sapwood at all altitudes. Values for δ13C were positively correlated with altitude in the Mediterranean site only. Main conclusions We found support for the GLH at the site without drought effects (Patagonia) and no support for the CLH at either site. It is suggested that drought moderated the effects of low temperature by masking the expected trend of the GLH at the Mediterranean site.
Carbon (C) storage is considered a key component to plant survival under drought and shade, although the combined effects of these factors on survival remain poorly understood. We investigated how drought and shade alter the C dynamics and survival of tree seedlings, and whether drought limits the access to or usage of stored C. We experimentally applied two levels of soil humidity (well-watered versus drought, the latter induced by dry-down) and light availability (light versus complete darkness) on 1-year-old seedlings of Acer pseudoplatanus L. for 3 months. We quantified the survival, biomass, growth rate and non-structural carbohydrates (NSC) of seedlings at their time of death or at the end of the experiment for those that survived. We found that the soil dried out faster when drought was combined with light than when it was combined with complete darkness. Seedlings subjected to both drought and light showed reduced growth and reached 100% mortality earlier than any other treatment, with the highest NSC concentrations at the time of death. Seedlings exposed to both drought and complete darkness died significantly earlier than seedlings exposed to complete darkness only, but had similar NSC concentrations at time of their death, suggesting that drought accelerated the use of stored C under complete darkness. Complete darkness significantly reduced seedling growth and whole-plant NSC concentrations regardless of soil humidity, while root NSC concentrations were significantly more reduced when complete darkness was combined with drought conditions. Thus, the C dynamics in A. pseudoplatanus seedlings under complete darkness was not hindered by drought, i.e., the access and use of stored C was not limited by drought. The contrasting growth and C storage responses driven by drought under light versus complete darkness are consistent with a key role of the drought progression in the C dynamics of trees.
Abstract The dependence of trees on carbon and nutrient storage is critical to predicting the forest vulnerability under climate change, but whether evergreen and deciduous species differ in their use and allocation of stored resources during spring phenology is unclear. Using a high temporal resolution, we evaluated the role of spring phenology and shoot growth as determinants of the carbon and nutrient storage dynamics in contrasting leaf habits. We recorded the phenology and shoot elongation and determined the concentrations of total non-structural carbohydrates (NSCs), starch, soluble carbohydrates, nitrogen (N) and phosphorus (P) in buds, expanding shoots and previously formed shoots of two sympatric Nothofagus species with contrasting leaf habit. Species reached similar shoot lengths, though shoot expansion started 35 days earlier and lasted c. 40 days more in the deciduous species. Thus, although the deciduous species had a relatively constant shoot growth rate, the evergreen species experienced a conspicuous growth peak for c. 20 days. In the evergreen species, the greatest decreases in NSC concentrations of previously formed shoots and leaves coincided with the maximum shoot expansion rate and fruit filling, with minimums of 63 and 65% relative to values at bud dormancy, respectively. In contrast, minimum NSC concentrations of the previously formed shoots of the deciduous species were only 73% and occurred prior to the initiation of shoot expansion. Bud N and P concentrations increased during budbreak, whereas previously formed shoots generally did not decrease their nutrient concentrations. Late spring phenology and overlapping of phenophases contributed to the greater dependence on storage of proximal tissues in the studied evergreen compared with deciduous species, suggesting that phenology is a key determinant of the contrasting patterns of storage use in evergreen and deciduous species.
Carbon (C) allocation to storage in woody tissues at the expense of growth is thought to promote shade tolerance, yet few studies on the subject examined C storage during maximum growth and considered stand influences. I asked how C storage in different plant tissues relates to shade tolerance in temperate forests with contrasting climates and physiognomies, and whether relationships vary during the growing season.In the late spring and late summer, I harvested seedlings of eight species with contrasting light requirements from the understory of a cold rainforest and a Mediterranean forest in Chile. Nonstructural carbohydrate (NSC) concentrations and pools (i.e., biomass x NSC concentration) were determined in leaves, aboveground wood, and roots. The effects of shade tolerance and sampling date on the NSCs were analyzed for each forest and tissue with linear mixed-effects models.In both forests, concentrations of NSC and soluble sugars in woody tissues, as well as fractions of NSC in these tissues, were lower in shade tolerant than in shade intolerant species. For root NSC concentrations, these trends depended on the sampling date: in the late spring the concentrations were similar in shade tolerant and intolerant species, while in the late summer they were lower in shade tolerant species.Shade tolerance is not linked to C storage in the two studied forests, suggesting that allocation to growth or defenses could be more advantageous for low light persistence. Alternatively, high levels of C storage could be also selected in shade intolerant species to face herbivory or drought.