Overhead transmission lines are designed to withstand meteorological loads such as wind, ice, combined wind and ice and static residual loads due to broken conductor and/or ice shedding. A line could be subjected to dynamic overloading when a triggering event is caused by a component failure. In this situation, a shock wave propagates through the system and a redistribution of the force takes place. If the capacity of the remaining system can not support this force redistribution, the line may experience a cascade failure. This paper presents a systematic methodology to model both the static and dynamic behaviors of a line due to conductor breakage using the ADINA (Automatic Dynamic Incremental Nonlinear Analysis) program. Based on the analysis, the extent of a cascade damage/failure zone is estimated and a mitigation approach for correcting the situation is provided.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
The apparent diffusion coefficient (ADC) provides a quantitative measure of water mobility that can be used to probe alterations in tissue microstructure due to disease or treatment. Establishment of the accepted level of variance in ADC measurements for each clinical application is critical for its successful implementation. The Diffusion-Weighted Imaging Biomarker Committee of the Quantitative Imaging Biomarkers Alliance (QIBA) has recently advanced the ADC Profile from the consensus to clinically feasible stage for the brain, liver, prostate, and breast. This profile distills multiple studies on ADC repeatability and describes detailed procedures to achieve stated performance claims on an observed ADC change within acceptable confidence limits. In addition to reviewing the current ADC Profile claims, this report has used recent literature to develop proposed updates for establishing metrology benchmarks for mean lesion ADC change that account for measurement variance. Specifically, changes in mean ADC exceeding 8% for brain lesions, 27% for liver lesions, 27% for prostate lesions, and 15% for breast lesions are claimed to represent true changes with 95% confidence. This report also discusses the development of the ADC Profile, highlighting its various stages, and describes the workflow essential to achieving a standardized implementation of advanced quantitative diffusion-weighted MRI in the clinic. The presented QIBA ADC Profile guidelines should enable successful clinical application of ADC as a quantitative imaging biomarker and ensure reproducible ADC measurements that can be used to confidently evaluate longitudinal changes and treatment response for individual patients.
Magnetic resonance imaging (MRI) has been playing an increasingly important role in biomedical research and in clinical diagnosis. The techniques of MRI have experienced rapid development and found wide applications in recent years. The technical development is marked not only by the improvement and optimization of conventional MR imaging techniques but also by the emergence of new pulse sequences such as CEST-MRI (Chemical Exchange Saturation Transfer MRI) and DWIBS (Diffusion-weighted Whole-body Imaging with Background body signal Suppression) and by new techniques such as compressed sensing MRI and MR fingerprinting. The wide proliferation of MRI techniques has led to ever-increasing applications of MR imaging and enormous new findings in basic biomedical research as well as clinical sciences. This special issue aims at reflecting the advances in MR imaging techniques and applications.
After rigorous review procedures, the selected papers in this special issue demonstrate how broad the field of MRI has become since Paul Lauterbur's classic paper in 1973. The types of papers include review articles as well as original research. Within this issue are papers that study not only data acquisition and reconstruction methods but also specialized analysis methods and new combinations of MR with therapeutic and interventional techniques. The imaging methods cover structural MRI, functional MRI, diffusion-weighted imaging, and diffusion tensor imaging. The applications addressed are similarly wide reaching, containing cancer, liver diseases, brain function, and so forth.
Of particular note, this special issue contains several papers on perhaps the most common use of MRI in MR research centers: functional MRI (fMRI) of the brain. Neuronal activation in the brain results in local increase in the oxygen-enriched blood in capillaries associated with the signal change measured in traditional BOLD-based fMRI. One paper (J. Chung et al.) examines the fusiform face region and the fundamental confoundedness of the signal of blood from large vessels causing a mismatch between the localization of neuronal activation and that of fMRI signal. Once considered to be simply “physiological noise,” certain characteristic fluctuations in the fMRI signal during rest have been shown to be associated with specific neuronal networks. Due to the practical appeal of fMRI without tasks, we are including two review papers reflecting the recent great interest in clinical methods for “resting state” fMRI, one for multiple sclerosis (E. Sbardella et al.) and the other for psychiatric disorders (X. Zhan et al.). In a related paper (X. Li et al.), a temporal decomposition method is presented which decomposes a single brain functional network into several modes to explore dynamic brain functional networks in a continuous, “state-related,” “finger-force feedback” fMRI experiment. Finally, two papers are included which highlight some of the many ways in which advanced data acquisition (D. Kang et al.) and image reconstruction methods (P. K. Han et al.), such as segmented echo-planar imaging (EPI) and compressed sensing, can help to overcome some of the image quality obstacles of fMRI at high field strength.
Two other neuro-MRI studies are presented as well regarding areas of strong interest in MR: diffusion tensor imaging (DTI) and MR guidance. In the first paper (T.-K. Truong et al.), a new method is presented for the correction of eddy current-induced echo-shifting effect that produces three types of artifacts, namely, the eddy current induced signal loss, the artificial signal modulation due to eddy current-induced erroneous T2∗ weighting, and artificial signal elevation associated with partial Fourier reconstruction. The second paper (E. Vaghefi et al.) presents an MRI-based technique to guide the noninvasive transcranial brain stimulation without the use of a neuronavigation system.
As MR has matured technically primarily for neuroapplications, it has also proven to be increasingly useful for body imaging. An example is the technique of real-time MR thermometry guidance for ultrasound ablation of uterine fibroids, in which excessive skin heating has been an obstacle. To address this issue, the feasibility and safety of utilizing a water-cooled device in contact with the skin are proposed and examined in a paper (M. Ikink et al.). Another “hot topic” in body MR has been the study of liver fibrosis, using a variety of MR methods (e.g., MR elastography and DWI). In this issue, a paper (T. Yokoo et al.) is included which examines the use of a combined Gd and USPIO contrast agent together with texture analysis to better depict the reticular signal abnormalities associated with fibrosis. In a review of MRI for Crohn's Disease (K. Yoon et al.), a variety of methods are presented for inflammatory bowel disease including endoluminal and intravenous contrast agents, DWI, dynamic bowel motility imaging, and MR spectroscopy of fecal and urine samples. Finally, MR-based molecular imaging is presented in a review paper (J. H. Kim et al.) focusing on labelling stem cell with nanoparticles in urology to evaluate migration and survival of transplanted stems cells in prostate cancer and bladder dysfunction models.
With the many technical advances in the field, several MR methods have demonstrated their utility in terms of oncology. One paper (I. Thomassin-Naggara et al.) reviews the impact of perfusion and diffusion MRI and a new diagnostic MR scoring system (Adnex MR) upon the preoperative diagnostic accuracy in women with possible ovarian cancer. The utility of combining structural, perfusion, diffusion, and MR spectroscopy data is also presented in this issue for tumour relapse prediction using multiparametric analysis in glioblastoma patients (E. Vaghefi et al.). The use of MR (using diffusion MR and/or dynamic contrast enhancement) to predict the response to neoadjuvant therapy is presented in two papers (G.-Y. Zhang et al. and M. Petrillo et al.) focusing on nasopharyngeal carcinoma and rectal cancer, respectively.
In summary, the papers collected in this special issue cover a wide range of topics that are on the frontier of the MRI techniques and their applications.
Scientific Abstracts And Posters From The 44Th Annual Meeting Of The Southwestern Chapter Of The Society Of Nuclear Medicine, And From The 12Th Northeastern Regional Scientific Meeting Of The New England And New York Chapters Of The Society Of Nuclear Medicine