Seven months after the launch of a pilot study to screen newborns for Duchenne Muscular Dystrophy (DMD) in New York State, New York City became an epicenter of the coronavirus disease 2019 (COVID-19) pandemic. All in-person research activities were suspended at the study enrollment institutions of Northwell Health and NewYork-Presbyterian Hospitals, and study recruitment was transitioned to 100% remote. Pre-pandemic, all recruitment was in-person with research staff visiting the postpartum patients 1-2 days after delivery to obtain consent. With the onset of pandemic, the multilingual research staff shifted to calling new mothers while they were in the hospital or shortly after discharge, and consent was collected via emailed e-consent links. With return of study staff to the hospitals, a hybrid approach was implemented with in-person recruitment for babies delivered during the weekdays and remote recruitment for babies delivered on weekends and holidays, a cohort not recruited pre-pandemic. There was a drop in the proportion of eligible babies enrolled with the transition to fully remote recruitment from 64% to 38%. In addition, the proportion of babies enrolled after being approached dropped from 91% to 55%. With hybrid recruitment, the proportion of eligible babies enrolled (70%) and approached babies enrolled (84%) returned to pre-pandemic levels. Our experience adapting our study during the COVID-19 pandemic led us to develop new recruitment strategies that we continue to utilize. The lessons learned from this pilot study can serve to help other research studies adapt novel and effective recruitment methods.
From 2007 to 2014 the New York State (NYS) Newborn Screening (NBS) program screened 2 million newborns for congenital adrenal hyperplasia (CAH). The data was analyzed to determine factors that affect 17α-hydroxyprogesterone levels and assist in developing algorithm changes that would improve the positive predictive value of the methodology being used. The concentration of 17-OHP in dried blood spots was measured using the AutoDELFIA Neonatal 17-OHP kit (Perkin Elmer, Turku, Finland). During the 8 year period of this study 2476 babies were referred, 105 babies were diagnosed with CAH (90 with the salt-wasting (SW), 8 with simple virilizing (SV), 5 with non-classical CAH, and 2 with another enzyme deficiency) and, 14 with possible CAH. Three false negative cases with SV-CAH were reported to the program. Of the total 108 known cases, 74 (69%) infants were detected by newborn screening in the absence of clinical information, or, known family history. The incidence of CAH in NYS is 1 in 18,170 with a ratio of SW to SV of 8.2:1. The incidence of CAH is lower in Black infants than in White, Hispanic and Asian infants. Despite a lower mean birth weight, female infants have a lower mean 17-OHP value than male infants and are under-represented in the referred category. As per other NBS programs the false positive rate is exacerbated by prematurity/low birth weight and by over-early specimen collection.
Infants are screened for cystic fibrosis (CF) in New York State (NYS) using an IRT-DNA algorithm. The purpose of this study was to validate and assess clinical validity of the US FDA-cleared Illumina MiSeqDx CF 139-Variant Assay (139-VA) in the diverse NYS CF population. The study included 439 infants with CF identified via newborn screening (NBS) from 2002 to 2012. All had been screened using the Abbott Molecular CF Genotyping Assay or the Hologic InPlex CF Molecular Test. All with CF and zero or one mutation were tested using the 139-VA. DNA extracted from dried blood spots was reliably and accurately genotyped using the 139-VA. Sixty-three additional mutations were identified. Clinical sensitivity of three panels ranged from 76.2% (23 mutations recommended for screening by ACMG/ACOG) to 79.7% (current NYS 39-mutation InPlex panel), up to 86.0% for the 139-VA. For all, sensitivity was highest in Whites and lowest in the Black population. Although the sample size was small, there was a nearly 20% increase in sensitivity for the Black CF population using the 139-VA (68.2%) over the ACMG/ACOG and InPlex panels (both 50.0%). Overall, the 139-VA is more sensitive than other commercially available panels, and could be considered for NBS, clinical, or research laboratories conducting CF screening.
Abstract Introduction/Aims Creatine kinase‐MM (CK‐MM) is a marker of skeletal muscle damage. Detection of elevated levels of CK‐MM in newborns can enable an early suspicion of the diagnosis of Duchenne muscular dystrophy (DMD) before symptom onset. Our aim was to investigate CK‐MM levels in DMD‐affected and unaffected newborns using an immunoassay that measures CK‐MM concentration in dried blood spots collected for routine newborn screening. Methods To validate the assay in our laboratory, CK‐MM measurements and newborn demographic information were collected for 8584 de‐identified specimens and 15 confirmed DMD patients. After analyzing validation data, CK‐MM normal ranges were determined based on age of newborn at specimen collection. Subsequently, the assay was used to measure CK‐MM concentration in 26 135 newborns as part of a consented pilot study to screen for DMD in New York State. Mean and median levels of CK‐MM based on age of collection, in addition to the 2.5th, 50th, 97.5th, and 99.5th percentiles, were recalculated using the validation and screening data sets. Results Median CK‐MM within 1 hour of birth was 109 ng/mL, rose to a high of 499 ng/mL at 25 hours of age, and then declined to 200 ng/mL at 2 days of life. The median continued to decline more slowly and then stabilized at approximately 40 ng/mL at 1 week of life. Discussion Because of the marked variability and elevated CK‐MM levels observed within the first days of life, it is important to set multiple CK‐MM age‐related cut‐offs when screening for DMD in newborns.
Newborn screening for Duchenne muscular dystrophy can be performed via a first-tier creatine kinase-MM measurement followed by reflex testing to second-tier molecular analysis of the DMD gene. In order to establish appropriate cut-offs for the creatine kinase-MM screen, factors that influence creatine kinase-MM in newborns were investigated.Creatine kinase-MM data from a consented pilot study in New York State were collected over a two-year period and combined with de-identified validation data and analyzed. Univariate analysis and multiple linear regression analysis were performed.The analysis indicated that age of newborn at specimen collection, gestational age and birth weight were significant influencers of CK-MM levels in newborns. In addition, to a lesser extent, sex, race/ethnicity and seasonal temperature also affect CK-MM levels in newborns.To reduce false positive and false negative cases, newborn screening programs should be cognizant of factors that influence CK-MM when determining cut-offs for the assay. Variability based on age at specimen collection and birth weight are primarily observed within the first week of life. Therefore, particularly during this time period, multi-tiered cut-offs based on age of collection and lower cut-offs for premature and low birth weight babies are recommended. Other cut-off determinants may include sex, race/ethnicity and seasonal temperature.
Duchenne muscular dystrophy (DMD) is an X-linked disorder resulting in progressive muscle weakness and atrophy, cardiomyopathy, and in late stages, cardiorespiratory impairment, and death. As treatments for DMD have expanded, a DMD newborn screening (NBS) pilot study was conducted in New York State to evaluate the feasibility and benefit of NBS for DMD and to provide an early pre-symptomatic diagnosis.At participating hospitals, newborns were recruited to the pilot study, and consent was obtained to screen the newborn for DMD. The first-tier screen measured creatine kinase-MM (CK-MM) in dried blood spot specimens submitted for routine NBS. Newborns with elevated CK-MM were referred for genetic counseling and genetic testing. The latter included deletion/duplication analysis and next-generation sequencing (NGS) of the DMD gene followed by NGS for a panel of neuromuscular conditions if no pathogenic variants were detected in the DMD gene.In the two-year pilot study, 36,781 newborns were screened with CK-MM. Forty-two newborns (25 male and 17 female) were screen positive and referred for genetic testing. Deletions or duplications in the DMD gene were detected in four male infants consistent with DMD or Becker muscular dystrophy. One female DMD carrier was identified.This study demonstrated that the state NBS program infrastructure and screening technologies we used are feasible to perform NBS for DMD. With an increasing number of treatment options, the clinical utility of early identification for affected newborns and their families lends support for NBS for this severe disease.