Objective Dystrophin is a sarcolemmal membrane protein that prevents the myocyte from oncosis induced by physical stress. Because ischemic preconditioning (IPC) protects mitochondria and prevents oncosis during reperfusion, we hypothesized that dystrophin is an end-target of IPC distal to mitochondrial protection.
Abstract In HIV-1-infected patients, antiretroviral therapy (ART) is a key factor that may impact commensal microbiota and cause the emergence of side effects. However, it is not fully understood how long-term ART regimens have diverse impacts on the microbial compositions over time. Here, we performed 16S ribosomal RNA gene sequencing of the fecal and salivary microbiomes in patients under different long-term ART. We found that ART, especially conventional nucleotide/nucleoside reverse transcriptase inhibitor (NRTI)-based ART, has remarkable impacts on fecal microbial diversity: decreased α-diversity and increased ß-diversity over time. In contrast, dynamic diversity changes in the salivary microbiome were not observed. Comparative analysis of bacterial genus compositions showed a propensity for Prevotella -enriched and Bacteroides -poor gut microbiotas in patients with ART over time. In addition, we observed a gradual reduction in Bacteroides but drastic increases in Succinivibrio and/or Megasphaera under conventional ART. These results suggest that ART, especially NRTI-based ART, has more suppressive impacts on microbiota composition and diversity in the gut than in the mouth, which potentially causes intestinal dysbiosis in patients. Therefore, NRTI-sparing ART, especially integrase strand transfer inhibitor (INSTI)- and/or non-nucleotide reverse transcriptase inhibitor (NNRTI)-containing regimens, might alleviate the burden of intestinal dysbiosis in HIV-1-infected patients under long-term ART.
Antiretroviral therapy (ART) against HIV-1 infection offers the promise of controlling disease progression and prolonging the survival of HIV-1-infected patients. However, even the most potent ART regimens available today cannot cure HIV-1. Because patients will be exposed to ART for many years, physicians and researchers must anticipate the emergence of drug-resistant HIV-1, potential adverse effects of the current drugs, and need for future drug development. In this study, we screened a small-molecule compound library using cell-based anti-HIV-1 assays and discovered a series of novel anti-HIV-1 compounds, 4-oxoquinolines. These compounds exhibited potent anti-HIV-1 activity (EC50 < 0.1 μM) with high selectivity indexes (CC50/EC50 > 2500) and favorable pharmacokinetic profiles in mice. Surprisingly, our novel compounds have a chemical backbone similar to the clinically used integrase (IN) strand transfer inhibitor (INSTI) elvitegravir, although they lack the crucial 3-carboxylate moiety needed for the common INSTI diketo motif. Indeed, the new 4-oxoquinoline derivatives have no detectable INSTI activity. In addition, various drug-resistant HIV-1 strains did not display cross resistance to these compounds. Interestingly, time-of-addition experiments indicated that the 4-oxoquinoline derivative remains its anti-HIV-1 activity even after the viral integration stage. Furthermore, the compounds significantly suppressed p24 antigen production in HIV-1 latently infected cells exposed with tumor necrosis factor alpha. These findings suggest that our 4-oxoquinoline derivatives with no 3-carboxylate moiety may become novel lead compounds in the development of anti-HIV-1 drugs.
APOBEC3H (A3H) is a mammal-specific cytidine deaminase that potently restricts the replication of retroviruses. Primate A3Hs are known to exert key selective pressures against the cross-species transmission of primate immunodeficiency viruses from chimpanzees to humans. Despite recent advances, the molecular structures underlying the functional mechanisms of primate A3Hs have not been fully understood. Here, we reveal the 2.20-Å crystal structure of the chimpanzee A3H (cpzA3H) dimer bound to a short double-stranded RNA (dsRNA), which appears to be similar to two recently reported structures of pig-tailed macaque A3H and human A3H. In the structure, the dsRNA-binding interface forms a specialized architecture with unique features. The analysis of the dsRNA nucleotides in the cpzA3H complex revealed the GC-rich palindrome-like sequence preference for dsRNA interaction, which is largely determined by arginine residues in loop 1. In cells, alterations of the cpzA3H residues critical for the dsRNA interaction severely reduce intracellular protein stability due to proteasomal degradation. This suggests that cpzA3H stability is regulated by the dsRNA-mediated dimerization as well as by unknown cellular machinery through proteasomal degradation in cells. Taken together, these findings highlight unique structural features of primate A3Hs that are important to further understand their cellular functions and regulation.