Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of both community- and hospital-associated infections. The antibiotic resistance and virulence characteristics of MRSA are largely regulated by two-component signal transduction systems (TCS) including the graRS TCS. To make a relatively comprehensive insight into graRS TCS in MRSA, the bioinformatics analysis of dataset GSE26016 (a S. aureus HG001 WT strain vs. the Δ graRS mutant) from Gene Expression Omnibus (GEO) database was performed, and a total of 563 differentially expressed genes (DEGs) were identified. GO analysis revealed that the DEGs were mainly enriched in the “ de novo ” IMP biosynthetic process, lysine biosynthetic process via diaminopimelate, and pathogenesis; and they were mainly enriched in purine metabolism, lysine biosynthesis, and monobactam biosynthesis in KEGG analysis. WGCNA suggested that the turquoise module was related to the blue module, and the genes in these two modules were associated with S. aureus virulence and infection. To investigate the role of graRS in bacterial virulence, a graRS knockout mutant (Δ graRS ) was constructed using MRSA USA500 2,395 strain as a parent strain. Compared to the wild-type strain, the USA500Δ graRS showed reduced staphyloxanthin production, retarded coagulation, weaker hemolysis on blood agar plates, and a decreased biofilm formation. These altered phenotypes were restored by the complementation of a plasmid-expressed graRS . Meanwhile, an expression of the virulence-associated genes ( coa , hla , hlb , agrA , and mgrA ) was downregulated in the Δ graRS mutant. Consistently, the A549 epithelial cells invasion of the Δ graRS mutant was 4-fold lower than that of the USA500 wild-type strain. Moreover, on the Galleria mellonella infection model, the survival rate at day 5 post infection in the USA500Δ graRS group (55%) was obviously higher than that in the USA500 group (20%), indicating graRS knockout leads to a decreased virulence in vivo . In addition, the deletion of the graRS in the MRSA USA500 strain resulted in its increased susceptibilities to ampicillin, oxacillin, vancomycin, and gentamicin. Our work suggests that the graRS TCS plays an important role in regulating S. aureus virulence in vitro and in vivo and modulate bacterial resistance to various antibiotics.
Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present.
In sows, excess backfat during late gestation is associated with increased farrowing difficulties and influences the fetus, but the impact of backfat thickness on placental inflammation, oxidative stress, and vascular development has not been defined. In this study, 120 sows were divided into six groups based on backfat thickness (≤16, 17-18, 19-20, 21-22, 23-24, and ≥25 mm) in late gestation. The placental lipids, reactive oxygen species (ROS), malondialdehyde (MDA), and total antioxidant capacity (TAC) levels, inflammatory-related cytokine and angiogenesis were determined. The concentrations of triglycerides, total cholesterol, low density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA) linearly increased (p < 0.05) associated with increased late gestation backfat. ROS and MDA increased and TAC decreased (p < 0.05) as the backfat thickness increased. The mRNA expression of toll-like receptors (TLR) 2, TLR4, tumor necrosis factor (TNF) α, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1 increased with increased backfat in late gestation. There were no differences in IL-8 and IL-10 mRNA expression among sows with different backfat thickness. Placental vessel density initially increased and then decreased with increasing backfat thickness of sows. Similarly, the mRNA levels of vascular endothelial growth factor (VEGF) were also increased and then decreased. Excessive backfat in late gestation was associated with greater oxidative stress, greater expression of proinflammatory cytokines, and decreased expression of placental angiogenic regulators.
Biofilms play a crucial role in the pathogenicity of Staphylococcus epidermidis, while little is known about whether the essential YycFG two-component signal transduction system (TCS) is involved in biofilm formation. We used antisense RNA (asRNA) to silence the yycFG TCS in order to study its regulatory functions in S. epidermidis. Strain 1457 expressing asRNA yycF exhibited a significant delay (~4-5 h) in entry to log phase, which was partially complemented by overexpressing ssaA. The expression of asRNA yycF and asRNA yycG resulted in a 68 and 50% decrease in biofilm formation at 6 h, respectively, while they had no significant inhibitory effect on 12 h biofilm formation. The expression of asRNA yycF led to a ~5-fold increase in polysaccharide intercellular adhesion (PIA) production, but it did not affect the expression of accumulation-associated protein (Aap) or the release of extracellular DNA. Consistently, quantitative real-time PCR showed that silencing yycF resulted in an increased transcription of biofilm-related genes, including icaA, arlR, sarA, sarX, and sbp. An in silico search of the YycF regulon for the conserved YycF recognition pattern and a modified motif in S. epidermidis, along with additional gel shift and DNase I footprinting assays, showed that arlR, sarA, sarX, and icaA are directly regulated by YycF. Our data suggests that YycFG modulates S. epidermidis biofilm formation in an ica-dependent manner.
Abstract Mutations of claudin-19 cause Familial Hypomagnesaemia and Hypercalciuria, Nephrocalcinosis with Ocular Involvement. To study the ocular disease without the complications of the kidney disease, naturally occurring point mutations of human CLDN19 were recreated in human induced pluripotent cells or overexpressed in the retinae of newborn mice. In human induced pluripotent cells, we show that the mutation affects retinal neurogenesis and maturation of retinal pigment epithelium (RPE). In mice, the mutations diminish the P1 wave of the electroretinogram, activate apoptosis in the outer nuclear layer, and alter the morphology of bipolar cells. If mice are given 9-cis -retinal to counter the loss of retinal isomerase, the P1 wave is partially restored. The ARPE19 cell line fails to express claudin-19. Exogenous expression of wild type, but not mutant claudin-19, increases the expression of RPE signature genes. Mutated claudin-19 affects multiple stages of RPE and retinal differentiation through its effects on multiple functions of the RPE.
Hypsizygus marmoreus has become one of the most popular edible mushrooms due to its high nu-tritional and economic value. Previous researchers found that Serratia odorifera could promote the growth of H. marmoreus by producing and secreting some of its inducers. However, the specific mechanism of action was still unclear. In this study, we found that exogenous addition of sterile fermentation filtrate (HZSO-1), quorum sensing (QS signaling molecules, 3-oxo-C6-HSL, cy-clo(Pro-Leu), and cyclo(Tyr-Leu) could significantly promote the growth of H. marmoreus, increase the number of clamp junctions, and the diameter of mycelium (P < 0.05). In addition, non-targeted metabolomic analysis has revealed that 706 metabolites were detected in the treated group. Of these, 307 metabolites were significantly different (P < 0.05). Compared with the control, 54 and 86 metabolites were significantly increased and decreased in the HZSO-1 group, respec-tively (P < 0.05). We speculated that the sterile fermentation filtrate of S. odorifera could mediate the carbohydrate and amino acid metabolism of H. marmoreus by influencing the pentose phosphate pathway (PPP) to increase the energy supply for the growth and development of the mycelium. The above results will further reveal the growth-promoting mechanism of S. odorifera on H. mar-moreus.
Because there is no effective antibiotic to eradicate Staphylococcus epidermidis biofilm infections that lead to the failure of medical device implantations, the development of anti-biofilm vaccines is necessary. Biofilm formation by S. epidermidis requires accumulation-associated protein (Aap) that contains sequence repeats known as G5 domains, which are responsible for the Zn2+-dependent dimerization of Aap to mediate intercellular adhesion. Antibodies against Aap have been reported to inhibit biofilm accumulation. In the present study, three monoclonal antibodies (MAbs) against the Aap C-terminal single B-repeat construct followed by the 79-aa half repeat (AapBrpt1.5) were generated. MAb18B6 inhibited biofilm formation by S. epidermidis RP62A to 60% of the maximum, while MAb25C11 and MAb20B9 enhanced biofilm accumulation. All three MAbs aggregated the planktonic bacteria to form visible cell clusters. Epitope mapping revealed that the epitope of MAb18B6, which recognizes an identical area within AapBrpt constructs from S. epidermidis RP62A, was not shared by MAb25C11 and MAb20B9. Furthermore, all three MAbs were found to affect both Aap expression and extracellular polymeric substance (EPS, including extracellular DNA and PIA) biosynthesis in S. epidermidis and enhance the cell accumulation. These findings contribute to a better understanding of staphylococcal biofilm formation and will help to develop epitope-peptide vaccines against staphylococcal infections.