logo
    Monoclonal Antibodies against Accumulation-Associated Protein Affect EPS Biosynthesis and Enhance Bacterial Accumulation of Staphylococcus epidermidis
    43
    Citation
    43
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Because there is no effective antibiotic to eradicate Staphylococcus epidermidis biofilm infections that lead to the failure of medical device implantations, the development of anti-biofilm vaccines is necessary. Biofilm formation by S. epidermidis requires accumulation-associated protein (Aap) that contains sequence repeats known as G5 domains, which are responsible for the Zn2+-dependent dimerization of Aap to mediate intercellular adhesion. Antibodies against Aap have been reported to inhibit biofilm accumulation. In the present study, three monoclonal antibodies (MAbs) against the Aap C-terminal single B-repeat construct followed by the 79-aa half repeat (AapBrpt1.5) were generated. MAb18B6 inhibited biofilm formation by S. epidermidis RP62A to 60% of the maximum, while MAb25C11 and MAb20B9 enhanced biofilm accumulation. All three MAbs aggregated the planktonic bacteria to form visible cell clusters. Epitope mapping revealed that the epitope of MAb18B6, which recognizes an identical area within AapBrpt constructs from S. epidermidis RP62A, was not shared by MAb25C11 and MAb20B9. Furthermore, all three MAbs were found to affect both Aap expression and extracellular polymeric substance (EPS, including extracellular DNA and PIA) biosynthesis in S. epidermidis and enhance the cell accumulation. These findings contribute to a better understanding of staphylococcal biofilm formation and will help to develop epitope-peptide vaccines against staphylococcal infections.
    This paper presented the influence of Al(III) on biodegradability, micromorphology, composition and functional groups characteristics of the biofilm extracellular polymeric substances (EPS) during different growth phases. The sequencing batch biofilm reactors were developed to cultivate biofilms under different Al(III) dosages. The results elucidated that Al(III) affected biofilm development adversely at the beginning of biofilm growth, but promoted the biofilm mass and improved the biofilm activity with the growth of the biofilm. The micromorphological observation indicated that Al(III) led to a reduction of the filaments and promotion of the EPS secretion in growth phases of the biofilm, also Al(III) could promote microorganisms to form larger colonies for mature biofilm. Then, the analysis of EPS contents and components suggested that Al(III) could increase the protein (PN) of tightly bound EPS (TB-EPS) which alleviated the metal toxicity inhibition on the biofilm during the initial phases of biofilm growth. The biofilm could gradually adapt to the inhibition caused by Al(III) at the biofilm maturation moment. Finally, through the Fourier transform infrared spectroscopy, it was found that Al(III) was beneficial for the proliferation and secretion of TB-EPS functional groups, especially the functional groups of protein and polysaccharides.
    Extracellular polymeric substance
    Bacterial growth
    The current study has been designed to delineate the efficacy of geraniol (GE) on biofilm formation in Staphylococcus epidermidis as well as the effect of subinhibitory concentrations of GE on the development of adaptive resistance.Biofilm biomass quantification assay was performed to evaluate the antibiofilm activity of GE against S. epidermidis. Microscopic observation of biofilms and extracellular polymeric substance (EPS), slime and cell surface hydrophobicity (CSH) production were also studied to support the antibiofilm potential of GE. In addition, S. epidermidis was examined for its adaptive resistance development upon continuous exposure of GE at its subinhibitory concentrations.Results/Key findings. The MIC of GE against S. epidermidis was 512 µg ml-1. Without hampering the growth of the pathogen, GE at its sub-MICs (50, 100, 150 and 200 µg ml-1) exhibited a dose-dependent increase in antibiofilm activity. The minimal biofilm inhibitory concentration (MBIC) of GE was found to be 200 µg ml-1 with a maximum biofilm inhibition of 85 %. Disintegrated biofilm architecture, reduced EPS, slime and CSH production validated the antibiofilm efficacy of GE. Although the action of GE on preformed biofilm is limited, a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and live/dead cell staining method revealed reduction in the viability (47 %) of biofilm inhabitants at 2×MIC concentration. Sequential exposure of S. epidermidis to the sub-MICs of GE resulted in poor development of adaptive resistance with diminished biofilm formation.The present study highlights the potential of GE as a suitable candidate for the control of biofilm-mediated S. epidermidis infections.
    Extracellular polymeric substance
    Citations (49)
    Staphylococcus epidermidis is recognized as cause of biofilm-associated infections and interest in the development of new approaches for S. epidermidis biofilm treatment has increased. In a previous paper we reported that the supernatant of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 presents an anti-biofilm activity against S. epidermidis and preliminary physico-chemical characterization of the supernatant suggested that this activity is due to a polysaccharide. In this work we further investigated the chemical nature of the anti-biofilm P. haloplanktis TAC125 molecule. The production of the molecule was evaluated in different conditions, and reported data demonstrated that it is produced in all P. haloplanktis TAC125 biofilm growth stages, also in minimal medium and at different temperatures. By using a surface coating assay, the surfactant nature of the anti-biofilm compound was excluded. Moreover, a purification procedure was set up and the analysis of an enriched fraction demonstrated that the anti-biofilm activity is not due to a polysaccharide molecule but that it is due to small hydrophobic molecules that likely work as signal. The enriched fraction was also used to evaluate the effect on S. epidermidis biofilm formation in dynamic condition by BioFlux system.
    Pseudoalteromonas
    Citations (32)
    The objective of this study was to investigate the biofilm inhibitory activity of Streptomyces‐derived actinomycin D against biofilm formation by Staphylococcus epidermidis. The microtitre plate method and microscopy were used to detect the biofilm formation of S. epidermidis. And an attempt was made to detect the effect of actinomycin D on important biofilm components, exopolysaccharides (EPS) in S. epidermidis using precolumn derivation HPLC. Also cell surface hydrophobicities of S. epidermidis were assessed to explore action mechanisms. The qPCR was performed to demonstrate the genetic mechanisms of biofilm formation by S. epidermidis. Unlike other antibiotics, actinomycin D (1·5 μg ml−1) from Streptomyces luteus significantly inhibited biofilm formation by S. epidermidis. Additionally, it effectively inhibited S. epidermidis cells from adhering to glass slides. Actinomycin D downregulated ica locus and then the reduced polysaccharide intercellular adhesin production caused S. epidermidis cells to become less hydrophobic, thus supporting its anti‐biofilm effect. Streptomyces‐derived actinomycin D is active in inhibiting the biofilm formation of S. epidermidis. Actinomycin D can be used as a promising antibiofilm agent in inhibiting S. epidermidis biofilm formation. The study is also the first insight into how actinomycin D inhibited the biofilm formation of S. epidermidis. Actinomycin D could potentially be used to reduce the risk of biofilm‐associated infections. Our study also suggests that the metabolites from Actinomycete strains keep further attention as potential antibiofilm agents against biofilm formation of S. epidermidis, even biofilm infections of the other bacteria.
    Citations (17)
    Staphylococcus epidermidis is a significant nosocomial pathogen in predisposed hosts because of its capability of forming a biofilm on indwelling medical devices. The initial stage of biofilm formation has a key role in S. epidermidis abiotic surface colonization. Recently, many strategies have been developed to create new anti-biofilm surfaces able to control bacterial adhesion mechanisms. In this work, the self-assembled amphiphilic layers formed by two fungal hydrophobins (Vmh2 and Pac3) have proven to be able to reduce the biofilm formed by different strains of S. epidermidis on polystyrene surfaces. The reduction in the biofilm thickness on the coated surfaces and the preservation of cell vitality have been demonstrated through confocal laser scanning microscope analysis. Moreover, the anti-biofilm efficiency of the self-assembled layers on different medically relevant materials has also been demonstrated using a CDC biofilm reactor.
    Hydrophobin
    Polystyrene
    Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis . A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63–5 μ g/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μ g/mL) and THR-SK010E (10 and 20 μ g/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm.
    Crystal violet
    Citations (44)
    This study sought to identify novel and nontoxic biofilm inhibitors from the Actinomycete library for attenuating biofilm formation by Staphylococcus epidermidis. After investigating the antibiofilm activities of spent media from 185 Actinomycete strains using two S. epidermidis strains (ATCC 35984 and a clinical strain 5‐121‐2) as target bacteria, three strains of tested Actinomycete (TRM 46200, TRM 41337, and TRM 46814) showed a significant inhibition against S. epidermidis biofilm formation without affecting the growth of planktonic cells. The characteristics of three strains of supernatants suggested that hydrophilic compound possibly extracellular peptides or proteins from these three strains, confer the biofilm reduction in S. epidermidis. An attempt was made to assess their effects on biofilm components and cell surface hydrophobicities in order to disclose acting mechanisms. The crude proteins from spent media of three strains degraded not only exopolysaccharides but also extracellular DNA in S. epidermidis biofilm. The active substances in crude proteins caused S. epidermidis cells to become less hydrophobic. Given these results, the metabolites from Actinomycete strains should keep further attention as potential antibiofilm agents against biofilm formation of S. epidermidis, even biofilm infections of the other bacteria. Staphylococcus epidermidis infections are frequently associated with biofilms that are difficult to eradicate with conventional antibiotics. The new biofilm inhibitors from Actinomycete will have a great value in the prevention and treatment of dairy cow mastitis and other biofilm‐related infections.
    Extracellular polymeric substance
    Citations (19)
    Staphylococcus epidermidis is a clinically important opportunistic pathogen that forms biofilm infections on nearly all types of indwelling medical devices. The biofilm forming capability of S. epidermidis has been linked to the presence of the ica operon in the genome, and the amount of biofilm formation measured by the crystal violet (CV) adherence assay. Six S. epidermidis strains were characterized for their ica status using PCR, and their biofilm forming ability over 6 days, using the CV assay and a flow cell system. Ica-negative strains characterized as 'negative for biofilm formation' based on the CV assay were demonstrated to form strongly attached biofilms after 6 days. However, the biofilms were not as extensive as the ica-positive strains. It was concluded that ica is not required for biofilm formation, nor is the 24-h CV assay generalizable for predicting the 6-day biofilm-forming ability for all S. epidermidis strains.
    Crystal violet
    Citations (30)