Background Malignant pleural effusion (MPE) is prevalent among cancer patients, indicating pleural metastasis and predicting poor prognosis. However, accurately identifying MPE in clinical settings is challenging. The aim of this study was to establish an innovative nomogram-derived model based on clinical indicators and serum metal ion levels to identify MPE. Methods From July 2020 to May 2022, 428 patients diagnosed with pleural effusion (PE) were consecutively recruited. Comprehensive demographic details, clinical symptoms, imaging data, pathological information, and laboratory results, including serum metal ion levels, were systematically collected. The nomogram was created by incorporating the most significant predictors identified through LASSO and multivariate logistic regression analysis. The predictors were assigned weighted points based on their respective regression coefficients, allowing for the calculation of a total score that corresponds to the probability of MPE. Internal validation using bootstrapping techniques assessed the nomogram’s performance, including calibration, discrimination, and clinical applicability. Results Seven key variables were identified using LASSO regression and multiple regression analysis, including dyspnea, fever, X-ray/CT compatible with malignancy, pleural carcinoembryonic antigen(pCEA), serum neuron-specific enolase(sNSE), serum carcinoembryonic antigen(sCEA), and pleural lactate dehydrogenase(pLDH). Internal validation underscored the superior performance of our model (AUC=0.940). Decision curve analysis (DCA) analysis demonstrated substantial net benefit across a probability threshold range > 1%. Additionally, serum calcium and copper levels were significantly higher, while serum zinc levels were significantly lower in MPE patients compared to benign pleural effusion (BPE) patients. Conclusion This study effectively developed a user-friendly and reliable MPE identification model incorporating seven markers, aiding in the classification of PE subtypes in clinical settings. Furthermore, our study highlights the clinical value of serum metal ions in distinguishing malignant pleural effusion from BPE. This significant advancement provides essential tools for physicians to accurately diagnose and treat patients with MPE.
Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions. A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024. The cohort was randomly divided into a training set (n = 969) and a validation set (n = 416). Feature selection was performed using LASSO regression and the Boruta algorithm. Seven machine learning algorithms were evaluated, with logistic regression chosen for its optimal balance between performance and robustness against overfitting. The overall incidence of MDR-KP-associated septic shock was 16.32% (226/1,385). The predictive model identified seven key risk factors: procalcitonin (PCT), sepsis, acute kidney injury, intra-abdominal infection, use of vasoactive medications, ventilator weaning failure, and mechanical ventilation. The logistic regression model demonstrated excellent predictive performance, with an area under the receiver operating characteristic curve (AUC) of 0.906 in the training set and 0.865 in the validation set. Calibration was robust, with Hosmer-Lemeshow test results of P = 0.065 (training) and P = 0.069 (validation). Decision curve analysis indicated substantial clinical net benefit. This study presents a validated, high-performing predictive model for MDR-KP-associated septic shock, offering a valuable tool for early clinical decision-making. Prospective, multi-center studies are recommended to further evaluate its clinical applicability and effectiveness in diverse settings.
Aim To investigate the differentiation potential of human umbilical mesenchymal stem cells (HuMSCs) and the key factors that facilitate hepatic differentiation. Methods HuMSCs were induced to become hepatocyte-like cells according to a previously published protocol. The differentiation status of the hepatocyte-like cells was examined by observing the morphological changes under an inverted microscope and by immunofluorescence analysis. Hepatocyte nuclear factor 4 alpha (HNF4α) overexpression was achieved by plasmid transfection of the hepatocyte-like cells. The expression of proteins and genes of interest was then examined by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. Results Our results demonstrated that HuMSCs can easily be induced into hepatocyte-like cells using a published differentiation protocol. The overexpression of HNF4α in the induced HuMSCs significantly enhanced the expression levels of hepatic-specific proteins and genes. HNF4α overexpression may be associated with liver-enriched transcription factor networks and the Wnt/β-Catenin pathway. Conclusion The overexpression of HNF4α improves the hepatic differentiation of HuMSCs and is a simple way to improve cellular sources for clinical applications.