Retail meats are one of the main routes for spreading antimicrobial-resistant bacteria (ARB) from livestock to humans through the food chain. In African countries, retail meats are often sold at roadside butcheries without chilling or refrigeration. Retail meats in those butcheries are suspected to be contaminated by ARB, but it was not clear. In this study, we tested for the presence of antimicrobial-resistant Escherichia coli from retail meats (n = 64) from roadside butcheries in Kampala, Uganda. The meat surfaces were swabbed and inoculated on PetriFilm SEC agar to isolate E. coli. We successfully isolated E. coli from 90.6% of these retail meat samples. We identified the phylogenetic type, antimicrobial susceptibility, and antimicrobial resistance genes prevalence between retail meat isolates (n = 89). Phylogenetic type B1 was identified from 70.8% of the retail meat isolates, suggesting that the isolates originated primarily from fecal contamination during meat processing. Tetracycline (TET)-resistant isolates with tetA and/or tetB gene(s) were the most frequently detected (28.1%), followed by ampicillin (AMP) resistance genes with blaTEM (15.7%,) and sulfamethoxazole-trimethoprim (SXT) resistance genes with sul2 (15.7%). No extended-spectrum beta-lactamase-producing isolates were detected. A conjugation assay showed that resistance to AMP, TET, and SXT could be simultaneously transferred to recipients. These findings suggest that antimicrobial-resistant E. coli can easily be transferred from farms to tables from retail meats obtained from roadside butcheries.
VP22 is a major tegument protein of equine herpesvirus type 1 (EHV-1). In the present study, we examined functions of VP22 in EHV-1 replication by viral protein expression analyses in cells infected with the VP22-deficient virus. The expressions of several viral proteins in the cells infected with the VP22-deficient virus were lower than those in the cells infected with the parent virus. One of the weakly expressed proteins was identified as ICP4, which is a major regulatory protein encoded by an immediate early gene of EHV-1. A real-time PCR analysis showed that the mRNA expression of ICP4 was the same in cells infected with the parent and VP22-deficient viruses. Hence, VP22 appears to promote synthesis of ICP4 post-transcriptionally.
Psittacid herpesvirus type 1 (PsHV-1) was isolated from a captive galah (Eolophus roseicapillus) in Japan that was suspected of having Pacheco's disease (PD), an acute fatal disease in psittacine birds. PsHV-1 has been classified into four genotypes based on the UL16 gene sequence. In the present study, we investigated the genetic and pathogenic characteristics of the isolated virus, FOY-1, compared with a reference strain, RSL-1. The FOY-1 strain was classified into PsHV-1 genotype 2. The FOY-1 strain was found to be less pathogenic to budgerigars than RSL-1, which was classified as genotype 4 in an in vivo study. This is the first report regarding the classification of originally isolated PsHV-1 in Japan and its characterization by animal infection experiment.
Equine herpesvirus type 1 (EHV-1) causes rhinopneumonitis, abortion and neurological outbreaks (equine herpesvirus myeloencephalopathy, EHM) in horses. EHV-1 also causes lethal encephalitis in laboratory small animals such as mice and hamsters experimentally. EHV-1 ORF76 is a homologue of HSV-1 US9, which is a herpesvirus kinase. Starting with an EHV-1 bacterial artificial chromosome clone of neuropathogenic strain Ab4p (pAb4p BAC), we constructed an ORF76 deletion mutant (Ab4p∆ORF76) by replacing ORF76 with the rpsLneo gene. Deletion of ORF76 had no influence on replication, cell-to-cell spread in cultured cells or replication in primary neuronal cells. In western blots of EHV-1-infected cell lysates, an EHV-1 Us9-specific polyclonal antibody detected multiple bands ranging from 35 to 42-kDa. In a CBA/N1 mouse infection model following intranasal inoculation, the parent and Ab4p∆ORF76 revertant caused the same histopathology in the brain and olfactory bulbs. The parent, Ab4p∆ORF76 and revertant mutant replicated similarly in the olfactory mucosa, although Ab4p∆ORF76 was not transported to the olfactory bulbs and was unable to infect the CNS. These results indicated that the ORF76 (US9) plays an essential role in the anterograde spread EHV-1.
Some filoviruses such as ebolaviruses and marburgviruses, cause hemorrhagic fever in humans and nonhuman primates. Pigs are suggested to play a potential role in the filovirus ecology. We investigated the seroprevalence of filovirus infection in pigs in Ghana. Using a viral glycoprotein (GP)-based enzyme-linked immunosorbent assay, we detected filovirus-specific immunoglobulin G antibodies in 5 of 139 samples. These positive sera showed specificities to four different filovirus species. Particularly, two of the positive sera reacted to GPs of two African ebolaviruses (i.e., Ebola virus and Taï Forest virus) in Western blotting. Our results suggest that these Ghanaian pigs were exposed to multiple filoviruses and emphasize the importance of continuous monitoring of filovirus infection in pig populations in West African countries.
By development of an information technology (IT) in recent years and shift of the production order in the production spot, the dealings form of a company is diversified and decision-making in dealings is becoming still more complicated. In this research, we build an "artificial market" on a computer, and try to solve macroscopic phenomena such as formation of a market price and determination of a circulation route, from micro viewpoints such as each dealings act. Our artificial market is developed based on economics of complex systems.
A female Japanese rock ptarmigan (Lagopus mutus japonicus) in captivity died of an unknown reason in 1985. The carcass was stored at -15℃ until 2005 and then examined to define the cause of death. Finding a nodular lesion on the cere, avian poxvirus (APV) infection was suspected. An APV-specific 4b core gene sequence was detected in DNA samples prepared from lung, liver and the nodular lesion by PCR. The nucleotide sequence of the PCR product showed 100% identity to seven sequences of fowlpox virus (FWPV) previously reported. Integration of nearly intact reticuloendotheliosis virus gene which specifically found in virulent FWPV was also detected. These results indicate that the Japanese rock ptarmigan was died with FWPV infection.
Escherichia albertii is an emerging enteropathogen. Several foodborne outbreaks of E. albertii have been reported in Japan; however, foods associated with most outbreaks remain unidentified. Therefore, polymerase chain reaction (PCR) assays detecting E. albertii specifically and sensitively are required. Primers and probe for real-time PCR assays targeting E. albertii-specific gene (EA-rtPCR) was designed. With 74 strains, including 43 E. albertii strains and several of its close relatives, EA-rtPCR specifically amplified E. albertii; therefore, the sensitivity of EA-rtPCR was then evaluated. The detection limits were 2.8 and 2.0-3.2 log colony-forming unit (CFU)/mL for E. albertii culture and enriched chicken culture inoculated with the pathogen, respectively. In addition, E. albertii was detected from 25 g of chicken meat inoculated with 0.1 log CFU of the pathogen by EA-rtPCR. The detection of E. albertii from chicken meat by EA-rtPCR was also evaluated by comparing with the nested-PCR assay, and 28 retail chicken meat and 193 dissected body parts from 21 chicken carcass were tested. One and three chicken meat were positive in the nested-PCR assay and EA-rtPCR, respectively. Fourteen carcasses had at least one body part that was positive for EA-rtPCR, and 36 and 48 samples were positive for the nested-PCR assay and EA-rtPCR, respectively. A total of 37 strains of E. albertii were isolated from seven PCR-positive samples obtained from six chicken carcass. All E. albertii isolates harbored eae gene, and were classified as E. albertii O-genotype (EAOg)3 or EAOg4 by EAO-genotyping. The EA-rtPCR developed in this study has potential to improve E. albertii detection in food and advance research on E. albertii infection.