In the collective unconscious of doctors and patients, purulent sputum is correlated with bacterial infection requiring antibiotics. The introduction of antibiotic therapy in a patient with purulent sputum is legitimate only in certain situations. The presence of purulent sputum during a mild infection of the upper airways does not generally justify the introduction of antibiotic treatment. In patients with chronic respiratory diseases, studies have shown that purulent sputum is often associated with a secondary bacterial infection and antibiotic therapy may provide clinical benefit.
Quantitative measurements of carotid plaque burden progression or regression are important in monitoring patients and in evaluation of new treatment options. 3D ultrasound (US) has been used to monitor the progression or regression of carotid artery plaques. This paper reports on the development and application of a method used to analyze changes in carotid plaque morphology from 3D US. The technique used is evaluated using manual segmentations of the arterial wall and lumen from 3D US images acquired in two imaging sessions. To reduce the effect of segmentation variability, segmentation was performed five times each for the wall and lumen. The mean wall and lumen surfaces, computed from this set of five segmentations, were matched on a point-by-point basis, and the distance between each pair of corresponding points served as an estimate of the combined thickness of the plaque, intima, and media (vessel-wall-plus-plaque thickness or VWT). The VWT maps associated with the first and the second US images were compared and the differences of VWT were obtained at each vertex. The 3D VWT and VWT-Change maps may provide important information for evaluating the location of plaque progression in relation to the localized disturbances of flow pattern, such as oscillatory shear, and regression in response to medical treatments.
Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. 3D ultrasound (US) has been used to monitor the progression of carotid artery plaques in symptomatic and asymptomatic patients. Different methods of measuring various ultrasound phenotypes of atherosclerosis have been developed. In this work, we extended concepts used in intima-media thickness (IMT) measurements based on 2D images and introduced a metric called 3D vessel-wall-plus-plaque thickness (3D VWT), which was obtained by computing the distance between the carotid wall and lumen surfaces on a point-by-point basis in a 3D image of the carotid arteries. The VWT measurements were then superimposed on the arterial wall to produce the VWT map. Since the progression of plaque thickness is important in monitoring patients who are at risk for stroke, we also computed the change of VWT by comparing the VWT maps obtained for a patient at two different time points. In order to facilitate the visualization and interpretation of the 3D VWT and VWT-Change maps, we proposed a technique to flatten these maps in an area-preserving manner.
Atherosclerosis is characterized by the development of plaques in the arterial wall, which ultimately leads to heart attacks and stroke. 3D ultrasound (US) has been used to screen patients' carotid arteries. Plaque measurements obtained from these images may aid in the management and monitoring of patients, and in evaluating the effect of new treatment options. Different types of measures for ultrasound phenotypes of atherosclerosis have been proposed. Here, we report on the development and application of a method used to analyze changes in carotid plaque morphology from 3D US images obtained at two different time points. We evaluated our technique using manual segmentations of the wall and lumen of the carotid artery from images acquired in two US scanning sessions. To incorporate the effect of intraobserver variability in our evaluation, manual segmentation was performed five times each for the arterial wall and lumen. From this set of five segmentations, the mean wall and lumen surfaces were reconstructed, with the standard deviation at each point mapped onto the surfaces. A correspondence map between the mean wall and lumen surfaces was then established, and the thickness of the atherosclerotic plaque at each point in the vessel was estimated to be the distance between each correspondence pairs. The two-sample Student's t-test was used to judge whether the difference between the thickness values at each pair corresponding points of the arteries in the two 3D US images was statistically significant.
Atherosclerosis is an inflammatory process similar to scar formation in the inner wall of the artery. It is the underlying cause of heart attacks and some strokes. Atherosclerotic lesions in the artery wall are called plaques. 3D ultrasound (US) has been used to monitor the progression of carotid vessel plaques in symptomatic and asymptomatic patients. Different ways of measuring various ultrasound phenotypes of atherosclerosis have been developed. Here, we report on the development and application of a method used to analyze changes in carotid plaque morphology from 3D US. In an effort to extend our previous work in plaque thickness analysis, we developed a procedure that facilitates the visualization and comparison of the distribution of plaque thickness by mapping the 3D arterial structure into a 2D plane.
We compared the intraobserver and interscan variability of carotid atherosclerosis measured using B-mode ultrasound for quantifying intima media thickness (IMT), 3-dimensional ultrasound (3DUS) for quantifying vessel wall volume (VWV) and total plaque volume (TPV), and magnetic resonance imaging (MRI) for measuring VWV. We also evaluated the associations of these measurements and sample sizes required to detect specific changes in patients with moderate atherosclerosis.Ten patients were evaluated with B-mode ultrasound, MRI, and 3DUS twice within 14 +/- 2 days. Measurements of IMT, MRI VWV, 3DUS VWV, and 3DUS TPV were performed by single observers using manual (VWV and TPV) and semiautomated (IMT) segmentation.Intraobserver coefficients of variation were 3.4% (IMT), 4.7% (3DUS VWV), 6.5% (MRI VWV), and 23.9% (3DUS TPV). Interscan coefficients of variation were 8.1% (MRI VWV), 8.9% (IMT), 13.5% (3DUS VWV), and 46.6% (3DUS TPV). Scan-rescan linear regressions were significant for 3DUS TPV (R(2) = 0.57), 3DUS VWV (R(2) = 0.59), and IMT (R(2) = 0.75) and significantly different (P < .05) for MRI VWV (R(2) = 0.87).B-mode ultrasound-derived IMT provided the highest intraobserver and interscan reproducibility. Three-dimensional measurements of VWV derived from 3DUS and MRI provided both high sensitivity and high intraobserver and interscan reliability.
Atherosclerosis is an inflammatory process similar to scar formation in the inner wall of the artery. It is the underlying cause of heart attacks and some strokes. Atherosclerotic lesions in the artery wall are called plaques. 3D ultrasound (US) has been used to monitor the progression of carotid vessel plaques in symptomatic and asymptomatic patients. Different ways of measuring various ultrasound phenotypes of atherosclerosis have been developed. Here, we report on the development and application of a method used to analyze changes in carotid plaque morphology from 3D US. In an effort to extend our previous work in plaque thickness analysis, we developed a procedure that facilitates the visualization and comparison of the distribution of plaque thickness by mapping the 3D arterial structure into a 2D plane.