Three evolutionarily conserved proteins known as SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) mediate exocytosis from single cell eukaryotes to neurons. Among neuronal SNAREs, syntaxin and SNAP-25 (synaptosome-associated protein of 25 kDa) reside on the plasma membrane, whereas synaptobrevin resides on synaptic vesicles prior to fusion. The SNARE motifs of the three proteins form a helical bundle which probably drives membrane fusion. Since studies in vivo suggested an importance for multiple SNARE complexes in the fusion process, and models appeared in the literature with large numbers of SNARE bundles executing the fusion process, we analysed the quaternary structure of the full-length native SNARE complexes in detail. By employing a preparative immunoaffinity procedure we isolated all of the SNARE complexes from brain, and have shown by size-exclusion chromatography and negative stain electron microscopy that they exist as approx. 30 nm particles containing, most frequently, 3 or 4 bundles emanating from their centre. Using highly purified, individual, full-length SNAREs we demonstrated that the oligomerization of SNAREs into star-shaped particles with 3 to 4 bundles is an intrinsic property of these proteins and is not dependent on other proteins, as previously hypothesized. The average number of the SNARE bundles in the isolated fusion particles corresponds well with the co-operativity observed in calcium-triggered neuronal exocytosis.
The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon.
The most common way of identifying proteins in proteomic analyses is to use short segments of sequence ("tags") determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning alpha-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1-4 transmembrane alpha-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5-18 transmembrane alpha-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase.
Significance Mitochondria generate the cellular fuel, adenosine triphosphate, or ATP, to sustain complex life. Production of ATP depends on the oxidation of energy-rich compounds to produce a chemical potential difference for hydrogen ions (or proton motive force, pmf), across the inner mitochondrial membrane (IMM). Disruption of the IMM, dissipation of the pmf, and cell death occur if the total concentration of calcium inside mitochondria is elevated sufficiently to open a pore in the IMM. It has been proposed that the pore is in the membrane sector of the ATP synthase. Here, we show that five membrane proteins associated with the enzyme’s stator are not involved in the pore, and that the pore persists in the absence of the enzyme complex.
The mitochondrial permeability transition pore (PTP) is a physiological phenomenon lacking a molecular basis. The phenomenon, described over 40 y ago, is that in response to elevated levels of Ca2+ ions in the mitochondrial matrix a nonspecific channel opens, water enters the mitochondria, their cristae swell, their membranes rupture, terminating ATP synthesis, and cell death by necrosis ensues (1). Pore opening can be inhibited by the binding of cyclosporin A to cyclophilin D, a prolyl cis–trans isomerase in the mitochondrial matrix that interacts with the pore without necessarily being a component. The open pore allows hydrophilic molecules up to a molecular weight of 1,500 Da to … [↵][1]1To whom correspondence may be addressed. Email: walker{at}mrc-mbu.cam.ac.uk. [1]: #xref-corresp-1-1