Introduction For end-stage lung diseases, double lung transplantation (DLTx) is the ultimate curative treatment option. However, acute and chronic rejection and chronic dysfunction are major limitations in thoracic transplantation medicine. Thus, a better understanding of the contribution of immune responses early after DLTx is urgently needed. Passenger cells, derived from donor lungs and migrating into the recipient periphery, are comprised primarily by NK and T cells. Here, we aimed at characterizing the expression of killer cell immunoglobulin-like receptors (KIR) on donor and recipient NK and T cells in recipient blood after DLTx. Furthermore, we investigated the functional status and capacity of donor vs . recipient NK cells. Methods Peripheral blood samples of 51 DLTx recipients were analyzed pre Tx and at T0, T24 and 3wk post Tx for the presence of HLA-mismatched donor NK and T cells, their KIR repertoire as well as activation status using flow cytometry. Results Within the first 3 weeks after DLTx, donor NK and T cells were detected in all patients with a peak at T0. An increase of the KIR2DL/S1-positive subset was found within the donor NK cell repertoire. Moreover, donor NK cells showed significantly higher frequencies of KIR2DL/S1-positive cells (p<0.01) 3wk post DLTx compared to recipient NK cells. This effect was also observed in donor KIR + T cells 3wk after DLTx with higher proportions of KIR2DL/S1 (p<0.05) and KIR3DL/S1 (p<0.01) positive T cells. Higher activation levels of donor NK and T cells (p<0.001) were detected compared to recipient cells via CD25 expression as well as a higher degranulation capacity upon activation by K562 target cells. Conclusion Higher frequencies of donor NK and T cells expressing KIR compared to recipient NK and T cells argue for their origin in the lung as a part of a highly specialized immunocompetent compartment. Despite KIR expression, higher activation levels of donor NK and T cells in the periphery of recipients suggest their pre-activation during the ex situ phase. Taken together, donor NK and T cells are likely to have a regulatory effect in the balance between tolerance and rejection and, hence, graft survival after DLTx.
Abstract Hepatocellular carcinoma (HCC) represents a global health challenge with limited therapeutic options. Anti-angiogenic immune checkpoint inhibitor-based combination therapy has been introduced for progressed HCC, but improves survival only in a subset of HCC patients. Tyrosine-kinase inhibitors (TKI) such as sorafenib represent an alternative treatment option but have only modest efficacy. Using different HCC cell lines and HCC tissues from various patients reflecting HCC heterogeneity, we investigated whether the sorafenib response could be enhanced by combination with pro-apoptotic agents, such as TNF-related apoptosis-inducing ligand (TRAIL) or the BH3-mimetic ABT-737, which target the death receptor and mitochondrial pathway of apoptosis, respectively. We found that both agents could enhance sorafenib-induced cell death which was, however, dependent on specific BH3-only proteins. TRAIL augmented sorafenib-induced cell death only in NOXA-expressing HCC cells, whereas ABT-737 enhanced the sorafenib response also in NOXA-deficient cells. ABT-737, however, failed to augment sorafenib cytotoxicity in the absence of BIM, even when NOXA was strongly expressed. In the presence of NOXA, BIM-deficient HCC cells could be in turn strongly sensitized for cell death induction by the combination of sorafenib with TRAIL. Accordingly, HCC tissues sensitive to apoptosis induction by sorafenib and TRAIL revealed enhanced NOXA expression compared to HCC tissues resistant to this treatment combination. Thus, our results suggest that BH3-only protein expression determines the treatment response of HCC to different sorafenib-based drug combinations. Individual profiling of BH3-only protein expression might therefore assist patient stratification to certain TKI-based HCC therapies.
In liver diseases with severe parenchymal loss, e.g. acute-on-chronic liver failure (ACLF), liver progenitor cells (LPC) are the main cell source to replenish lost hepatocytes through cell reprogramming. The molecular mechanisms underlying LPC towards hepatocytes differentiation in ACLF largely remain unknown to date. Activation of LPC is morphologically demonstrated as ductular reaction (DR). The similarity between DR and ductal plate (DP) of embryonic liver implies that LPC/DR differentiation towards hepatocytes might exploit similar mechanisms stem cells adopted in embryonic development. Tripartite motif protein (TRIM) 33 is a crucial transcription factor for differentiation of embryonic stem cells through the formation of transcription factor complexes with phosphorylated Smad2 and Smad3, the downstream substrates of activated TGF-β signaling. This transcription factor complex replaces heterochromatin protein 1, a main inhibitor of master regulators of cell differentiation, and thus opens binding sites at promoters for the additional transcription factor complexes, such as Smad4-pSmad2/3-FoxH1. The binding of the latter complexes leads to expression of master regulators of differentiation, e.g. goosecoid (GSC). The current study investigated the role of TRIM33 in LPC differentiation towards hepatocytes in ACLF.
Hepatocellular carcinoma (HCC) represents an increasing health problem with limited therapeutic options. In patients with intermediate disease stage, transarterial chemoembolization (TACE) is widely applied. Treatment response is routinely assessed by imaging techniques according to the international response evaluation criteria in solid tumors, which consider tumor regression (RECIST) or additionally tumor necrosis (mRECIST). Evaluation of treatment response, however, by these methods is time- and cost-intensive and usually performed at earliest several months following TACE. We therefore investigated the suitability of novel non-invasive cell death biomarkers for an earlier prediction of TACE response. For this purpose we analyzed activation of pro-apoptotic caspases and the proteolytic cleavage of the caspase substrate CK-18 in liver tissues and sera from HCC patients by immunohistochemistry, a luminometric substrate assay and ELISA.
The role of endothelial cells in the pathophysiology of antibody-mediated rejection after renal transplantation has been widely investigated. We expand this scenario to the impact of epithelial cells on the microenvironment during rejection. Primary proximal tubular epithelial cells were stimulated via HLA class I, CD155 and CD166 based on their potential signal-transducing capacity to mediate back signaling after encounter with either T/NK cells or donor-specific antibodies. Upon crosslinking of these ligands with mAbs, PTEC secreted IL-6, CXCL1,8,10, CCL2, and sICAM-1. These proteins were also released by PTEC as consequence of a direct interaction with T/NK cells. Downmodulation of the receptor CD226 on effector cells confirmed the involvement of this receptor/ligand pair in back signaling. In vivo, CD155 and CD166 expression was detectable in proximal and distal tubuli of renal transplant biopsies, respectively. The composition of the protein microenvironment in these biopsies showed a substantial overlap with the PTEC response. Cluster and principal component analyses of the microenvironment separated unsuspicious from rejection biopsies and, furthermore, ABMR, TCMR, and borderline rejection. In conclusion, our results provide evidence that epithelial cells may contribute to the rejection process and pave the way to a better understanding of the pathomechanisms of kidney allograft rejection. The role of endothelial cells in the pathophysiology of antibody-mediated rejection after renal transplantation has been widely investigated. We expand this scenario to the impact of epithelial cells on the microenvironment during rejection. Primary proximal tubular epithelial cells were stimulated via HLA class I, CD155 and CD166 based on their potential signal-transducing capacity to mediate back signaling after encounter with either T/NK cells or donor-specific antibodies. Upon crosslinking of these ligands with mAbs, PTEC secreted IL-6, CXCL1,8,10, CCL2, and sICAM-1. These proteins were also released by PTEC as consequence of a direct interaction with T/NK cells. Downmodulation of the receptor CD226 on effector cells confirmed the involvement of this receptor/ligand pair in back signaling. In vivo, CD155 and CD166 expression was detectable in proximal and distal tubuli of renal transplant biopsies, respectively. The composition of the protein microenvironment in these biopsies showed a substantial overlap with the PTEC response. Cluster and principal component analyses of the microenvironment separated unsuspicious from rejection biopsies and, furthermore, ABMR, TCMR, and borderline rejection. In conclusion, our results provide evidence that epithelial cells may contribute to the rejection process and pave the way to a better understanding of the pathomechanisms of kidney allograft rejection.
Question Amiodarone, a widely used antiarrhythmic drug, can cause steatohepatitis, liver fibrosis and cirrhosis. The molecular mechanisms of amiodarone-mediated liver injury remain largely unknown. We therefore investigated amiodarone-mediated hepatocellular injury in patients with chronic heart failure, in primary hepatocytes and HepG2 cells.
Belatacept, Nulojix®, inhibits the interaction of CD28 on naïve T cells with B7.1/B7.2 (CD80/86) on antigen presenting cells, leading to T cell hyporesponsiveness and anergy and is approved as immunosuppressive drug in kidney transplantation. Due to its specificity for B7.1/2 molecules, side effects are reduced compared to other immunosuppressive drugs like calcineurin- and mTOR-inhibitors. Kidney transplant recipients under Belatacept-based immunosuppression presented with superior renal function and similar graft survival seven years after transplantation compared to cyclosporine treatment. However, de novo Belatacept-based immunosuppression was associated with increased risk of early rejections and viral (EBV) infections in clinical trials, especially in EBV-naïve patients. Since there is no vaccination against EBV infection available, EBV-derived virus like particles (EBV-VLPs) are currently developed as vaccine strategy. Here, we investigated the immunosuppressive effects of Belatacept compared to calcineurin- and mTOR inhibitors on allo- versus virus-specific T cells and the potency of EBV-VLPs to induce virus-specific T cell responses in vitro. Using PBMC of kidney recipients and healthy donors, we could demonstrate selective inhibition of allo-specific de novo T cell responses but not virus-specific memory T cell responses by Belatacept, as measured by IFN-γ production. In contrast, calcineurin inhibitors suppressed IFN-γ production of virus-specific memory CD8+ T cells completely. These results experimentally confirm the concept that Belatacept blocks CD28-mediated costimulation in newly primed naïve T cells but does not interfere with memory T cell responses being already independent from CD28-mediated costimulation. Additionally, we could show that EBV-VLPs induce a significant though weak IFN-γ-mediated T cell response in vitro in both kidney recipients and healthy donors. In summary, we demonstrated that immunosuppression of kidney recipients by Belatacept may primarily suppress de novo allo-specific T cell responses sparing virus-specific memory T cells. Moreover, EBV-VLPs could represent a novel strategy for vaccination of immunocompromised renal transplant recipients to prevent EBV reactivation especially under Belatacept-based immunosuppression.
Background Anti-angiogenic immune checkpoint inhibitor-based combination therapy is currently used for treatment of progressed HCC, but improves survival only in a subset of patients. Tyrosine-kinase inhibitors (TKI) such as sorafenib represent an alternative treatment option but have only modest efficacy. Using different HCC cell lines and HCC tissues from various patients reflecting HCC heterogeneity, we investigated whether sorafenib response could be enhanced by the combination with pro-apoptotic agents, such as TNF-related apoptosis-inducing ligand (TRAIL) or the BH3-mimetic ABT-737, which target the death receptor and mitochondrial pathway of apoptosis, respectively.
Abstract Non-alcoholic fatty liver disease (NAFLD) shows an increasing prevalence and is associated with the development of liver fibrosis and cirrhosis as the major risk factors of liver-related mortality in this disease. The therapeutic possibilities are limited and restricted to life style intervention, since specific drugs for NAFLD are unavailable so far. TNFα has been implicated as a major pathogenic driver of NAFLD. TNFα-mediated liver injury occurs mainly via TNF-receptor-1 (TNFR1) signaling, whereas TNFR2 mediates protective pathways. In this study, we analyzed the therapeutic effects of a novel antibody, which selectively inhibits TNFR1 while retaining protective TNFR2 signaling in a high-fat diet (HFD) mouse model of NAFLD. Mice were fed with HFD for 32 weeks and treated with anti-TNFR1-antibody or control-antibody for the last 8 weeks. We then investigated the mechanisms of TNFR1 inhibition on liver steatosis, inflammatory liver injury, insulin resistance and fibrosis. Compared to control-antibody treatment, TNFR1 inhibition significantly reduced liver steatosis and triglyceride content, which was accompanied by reduced expression and activation of the transcription factor SREBP1 and downstream target genes of lipogenesis. Furthermore, inhibition of TNFR1 resulted in reduced activation of the MAP kinase MKK7 and its downstream target JNK, which was associated with significant improvement of insulin resistance. Apoptotic liver injury, NAFLD activity and alanine aminotransferase (ALT) levels, as well as liver fibrosis significantly decreased by anti-TNFR1 compared to control-antibody treatment. Thus, our results suggest selective TNFR1 inhibition as a promising approach for NAFLD treatment.