Nucleic acid-sensing Toll-like receptors (TLR) 3, 7/8, and 9 are key innate immune sensors whose activities must be tightly regulated to prevent systemic autoimmune or autoinflammatory disease or virus-associated immunopathology. Here, we report a systematic scanning-alanine mutagenesis screen of all cytosolic and luminal residues of the TLR chaperone protein UNC93B1, which identified both negative and positive regulatory regions affecting TLR3, TLR7, and TLR9 responses. We subsequently identified two families harboring heterozygous coding mutations in UNC93B1, UNC93B1+/T93I and UNC93B1+/R336C, both in key negative regulatory regions identified in our screen. These patients presented with cutaneous tumid lupus and juvenile idiopathic arthritis plus neuroinflammatory disease, respectively. Disruption of UNC93B1-mediated regulation by these mutations led to enhanced TLR7/8 responses, and both variants resulted in systemic autoimmune or inflammatory disease when introduced into mice via genome editing. Altogether, our results implicate the UNC93B1-TLR7/8 axis in human monogenic autoimmune diseases and provide a functional resource to assess the impact of yet-to-be-reported UNC93B1 mutations.
Abstract Potocki–Lupski syndrome (PTLS) is a genetic disorder that results from an interstitial duplication within chromosome 17p11.2. Children with PTLS typically present with infantile hypotonia, failure to thrive, and global developmental delay with or without major organ system involvement. Systematic clinical studies regarding growth, cardiovascular disease, and neurocognitive profiles have been published; however, systematic evaluation of central nervous system structure by magnetic resonance imaging (MRI) of the brain has not been reported. Herein, we describe three patients with PTLS who were found—in the course of routine clinical care—to have a type 1 Arnold‐Chiari malformation (CM‐1). This finding raises the question of whether the incidence of CM‐1 is increased in PTLS, and hence, if an MRI of the brain should be considered in the evaluation of all patients with this chromosomal duplication syndrome.