Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment. Although EEG-based AAD methods have shown promising results in recent years, current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images. This makes it challenging to handle EEG signals, which possess non-Euclidean characteristics. In order to address this problem, this paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input. Specifically, to effectively represent the non-Euclidean properties of EEG signals, dynamical graph convolutional networks are applied to represent the graph structure of EEG signals, which can also extract crucial features related to auditory spatial attention in EEG signals. In addition, to further improve AAD detection performance, self-distillation, consisting of feature distillation and hierarchical distillation strategies at each layer, is integrated. These strategies leverage features and classification results from the deepest network layers to guide the learning of shallow layers. Our experiments are conducted on two publicly available datasets, KUL and DTU. Under a 1-second time window, we achieve results of 90.0\% and 79.6\% accuracy on KUL and DTU, respectively. We compare our DGSD method with competitive baselines, and the experimental results indicate that the detection performance of our proposed DGSD method is not only superior to the best reproducible baseline but also significantly reduces the number of trainable parameters by approximately 100 times.
Aiming at the non-stationary and nonlinear characteristics o f fan vibration signals, a method based on time domain signal analysis combined with the improved k-mea ns clustering algorithm is proposed.In order to estimate the fault types, peak to peak values of several typical fan fault signals, Hurst exponent and approximate entropy have been extracted and put into the improved k-means clustering classifier as feature vectors.The experiments o n the centrifugal fanshow that: the selected three kinds of time-domain characteristics can reflect the difference between fault s and the effect.Besides, the improved k-means clustering algorithm whose average recognition rate may come up to 88. 67% has a better classification performance compared with the original k-means, and runs much mo re stably.
In this paper, we propose a novel self-distillation method for fake speech detection (FSD), which can significantly improve the performance of FSD without increasing the model complexity. For FSD, some fine-grained information is very important, such as spectrogram defects, mute segments, and so on, which are often perceived by shallow networks. However, shallow networks have much noise, which can not capture this very well. To address this problem, we propose using the deepest network instruct shallow network for enhancing shallow networks. Specifically, the networks of FSD are divided into several segments, the deepest network being used as the teacher model, and all shallow networks become multiple student models by adding classifiers. Meanwhile, the distillation path between the deepest network feature and shallow network features is used to reduce the feature difference. A series of experimental results on the ASVspoof 2019 LA and PA datasets show the effectiveness of the proposed method, with significant improvements compared to the baseline.
This is a challenge to enhance the distribution between the source and the target domains between different subjects, which is difficult but important for practical applications. In this paper, we proposed a transfer framework based on feature analysis for EEG-based emotion recognition. We firstly extract differential entropy features by computing logarithms of power spectral density. On this basis, transfer component analysis (TCA) was used to project the source and the target domains into a kernel Hilbert space, in order to reduce the distance between the two domains. Finally, we compare the performance of emotion recognition among different dimensions. Experiments results show that the best mean accuracy is 58.49% by using TCA-based method, which is better than the previous study of 52.06%. Meanwhile, experimental results validate the feasibility and efficiency for subject transfer emotion recognition.
Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.