There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions.
The area and volume of brain structural features, as assessed by high-resolution three-dimensional magnetic resonance imaging (MRI), are among the most heritable measures relating to the human CNS. We have conducted MRI scanning of all available monkeys >2 years of age (n = 357) from the extended multigenerational pedigree of the Vervet Research Colony (VRC). Using a combination of automated and manual segmentation we have quantified several correlated but distinct brain structural phenotypes. The estimated heritabilities (h(2)) for these measures in the VRC are higher than those reported previously for such features in humans or in other nonhuman primates: total brain volume (h(2) = 0.99, SE = 0.06), cerebral volume (h(2) = 0.98, SE = 0.06), cerebellar volume (h(2) = 0.86, SE = 0.09), hippocampal volume (h(2) = 0.95, SE = 0.07) and corpus callosum cross-sectional areas (h(2) = 0.87, SE = 0.07). These findings indicate that, in the controlled environment and with the inbreeding structure of the VRC, additive genetic factors account for almost all of the observed variance in brain structure, and suggest the potential of the VRC for genetic mapping of quantitative trait loci underlying such variance.
We compared the behavioral and caudate-putamen extracellular dopamine responses following intravenous (3.6 mg/kg) and subcutaneous (8 mg/kg) amphetamine administration using 2-min microdialysate sampling intervals, and doses of the drug selected to achieve comparable maximal brain concentrations. Following intravenous amphetamine, dopamine peaked within the first 2 min, then declined with a first-order decay rate of 0.018+/-0.007 min(-1). Following subcutaneous amphetamine, dopamine achieved maximum concentrations at 9 min and remained near peak levels for about 30 min before declining with a first-order decay rate of 0.019+/-0.008 min(-1). Maximal brain amphetamine levels and peak dopamine concentrations were equivalent following either route of drug administration. In contrast to the short latency to maximal extracellular dopamine, the onset of oral stereotypies was delayed until about 30 min following both routes of drug administration. Furthermore, in contrast to the behavioral response to amphetamine, apomorphine administration resulted in the rapid appearance of oral stereotypies within 5-10 min after drug administration. These results suggest that although caudate-putamen dopamine receptor activation may be a critical factor in the expression of focused oral stereotypies, other effects of amphetamine may interfere with the ability of animals to exhibit these behaviors.
Abstract The abuse of methamphetamine (METH) continues to increase throughout all age groups in different regions of the United States. "Ice," the popularized jargon for (+) methamphetamine hydrochloride, is the predominant drug form that is now consumed. "Ice" is effectively absorbed after either smoking or snorting and it is this rapid influx of drug that produces effects similar to those after intravenous administration. The intensity of METH actions in the central and peripheral nervous system shows tolerance after chronic administration, indicating that neuro-adaptations have occurred. Thus, the physiological processes and corresponding biochemical mechanisms that regulate neuronal function have been changed by METH exposure. These biological alterations contribute to the craving and dependence associated with METH abuse and the withdrawal syndrome upon abstinence. However, these changes in behavior may also result from METH-induced neurotoxicity. This article reviews aspects of METH pharmacokinetics and related molecular pharmacodynamics that represent METH pharmacology and then relates those actions to their potential to produce neurotoxicity in humans.