Studies with low intensity focused ultrasound (LIFU) and other related techniques have recently demonstrated the potential for ultrasound to reversibly modulate neural circuits in a number of different in vivo models. However, accurate acoustic targeting can be complicated by the attenuation and distortion of the acoustic beam during transcranial passage through the cranium. This can potentially complicate basic studies of the effects of targeted ultrasonic neurostimulation. An alternative intervention strategy is to develop ultrasonic neurostimulator probes small enough to be minimally-invasively implanted directly adjacent to target neural structures. Two different configurations of PZT-based low frequency microtransducers were designed, fabricated, and evaluated for such a strategy. Acoustic testing demonstrated evenly collimated acoustic radiation profiles, and a pilot study in a small animal model demonstrated the overall feasibility of this approach.
Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the nigrostriatal region of the brain; however, the neurodegeneration extends well beyond dopaminergic neurons. To gain a better understanding of the molecular changes relevant to PD, we applied two-dimensional LC-MS/MS to comparatively analyze the proteome changes in four brain regions (striatum, cerebellum, cortex, and the rest of brain) using a MPTP-induced PD mouse model with the objective to identify potential nigrostriatal-specific and other region-specific protein abundance changes. The combined analyses resulted in the identification of 4,895 nonredundant proteins with at least two unique peptides per protein. The relative abundance changes in each analyzed brain region were estimated based on the spectral count information. A total of 518 proteins were observed with substantial MPTP-induced abundance changes across different brain regions. A total of 270 of these proteins were observed with specific changes occurring either only in the striatum and/or in the rest of the brain region that contains substantia nigra, suggesting that these proteins are associated with the underlying nigrostriatal pathways. Many of the proteins that exhibit changes were associated with dopamine signaling, mitochondrial dysfunction, the ubiquitin system, calcium signaling, the oxidative stress response, and apoptosis. A set of proteins with either consistent change across all brain regions or with changes specific to the cortex and cerebellum regions were also detected. Ubiquitin specific protease (USP9X), a deubiquination enzyme involved in the protection of proteins from degradation and promotion of the TGF-β pathway, exhibited altered abundance in all brain regions. Western blot validation showed similar spatial changes, suggesting that USP9X is potentially associated with neurodegeneration. Together, this study for the first time presents an overall picture of proteome changes underlying both nigrostriatal pathways and other brain regions potentially involved in MPTP-induced neurodegeneration. The observed molecular changes provide a valuable reference resource for future hypothesis-driven functional studies of PD.
6-[F-18]Fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) has been used to measure the central dopaminergic function in many species, including humans and monkeys. For transport across the blood brain barrier (BBB), FDOPA competes with plasma large neutral amino acids (LNAA). In this article we evaluate the effects of normal physiological LNAA concentration variation on BBB transport (K1) and the FDOPA uptake measurement, Ki. We also investigate a method for reducing the dependency of FDOPA quantitation on LNAA. Adult vervet monkeys ( Cercopithecus aethiops sabaeus, n = 19) were fasted overnight before FDOPA positron emission tomography scans. Blood samples were drawn for LNAA determination, metabolite analysis, and compartmental modeling. The estimated K1 and Ki were both negatively correlated with LNAA concentrations (r 2 = 0.51 and 0.62, respectively). Using an adjustment to K1 and Ki based on these correlations, the LNAA dependency was reduced (SD of the data for K1 was reduced by 33%, for Ki by 40%). Experiments with amino acid loading on an additional six animals indicate that BBB transport can be described using Michaelis-Menten kinetics. Results show a clear dependence of FDOPA uptake on plasma LNAA concentrations, which can be removed to increase the precision of FDOPA quantitation.
Treatment of PC12 cells with AH5183 at concentrations of 40 nM to 40 microM inhibited the loading of newly synthesized acetylcholine into storage vesicles, but it had little effect on choline uptake, acetylcholine synthesis, or the vesicular content of previously loaded acetylcholine. AH5183 at 4 microM inhibited the Ba2+-evoked release of newly synthesized acetylcholine but not of older stores of acetylcholine. These data indicate that the vesicles are the source of the acetylcholine released from stimulated cells. AH5183 had little effect on the vesicular loading of dopamine and on the evoked release of dopamine, but at concentrations of 4-40 microM it did inhibit dopamine uptake by the cells.