Cell surface N-acetyllactosaminyl glycans have been shown to be key regulators of the vitality and effector function of anti-tumor T cells. When the S-type lectin, galectin-1 (Gal-1), binds N-acetyllactosamines displayed at high levels by distinct membrane glycoproteins on anti-tumor T cells, these cells either undergo apoptosis or adopt an immunoregulatory phenotype. Methods designed to antagonize the expression and function of these galactose – N-acetylglucosamine disaccharides on N- and O-glycans have thus intensified. The hope of such neutralization strategies is to circumvent the consequences of Gal-1-binding and tolerogenic effects to anti-tumor T cells. Because tumors characteristically express an abundance of Gal-1, it has been hypothesized that tumor-derived Gal-1 is a critical determinant in protecting tumor cells from T cell-mediated anti-tumor activity. To date, competitive glycan inhibitors of Gal-1 binding have shown effectiveness towards interfering with Gal-1-mediated effects. Though more recent efforts using fluorinated analogs of glucosamine designed to antagonize the biosynthesis of N-acetyllactosamines in effector/memory T cells have shown great promise for evading Gal-1 control and boosting anti-tumor T cell levels. In this perspective, the history and prospect of fluorinated glucosamine analogs as cancer therapeutics and potential value of eliminating N-acetyllactosamines on anti-tumor T cells to boost anti-tumor immunity is addressed.
How cancer cells bind to vascular surfaces and extravasate into target organs is an underappreciated, yet essential step in metastasis. We postulate that the metastatic process involves discrete adhesive interactions between circulating cancer cells and microvascular endothelial cells. Sialyl Lewis X (sLe(X)) on prostate cancer (PCa) cells is thought to promote metastasis by mediating PCa cell binding to microvascular endothelial (E)-selectin. Yet, regulation of sLe(X) and related E-selectin ligand expression in PCa cells is a poorly understood factor in PCa metastasis. Here, we describe a glycobiological mechanism regulating E-selectin-mediated adhesion and metastatic potential of PCa cells. We demonstrate that alpha1,3 fucosyltransferases (FT) 3, 6, and 7 are markedly elevated in bone- and liver-metastatic PCa and dictate synthesis of sLe(X) and E-selectin ligands on metastatic PCa cells. Upregulated FT3, FT6, or FT7 expression induced robust PCa PC-3 cell adhesion to bone marrow (BM) endothelium and to inflamed postcapillary venules in an E-selectin-dependent manner. Membrane proteins, CD44, carcinoembryonic antigen (CEA), podocalyxin-like protein (PCLP), and melanoma cell adhesion molecule (MCAM) were major scaffolds presenting E-selectin-binding determinants on FT-upregulated PC-3 cells. Furthermore, elevated FT7 expression promoted PC-3 cell trafficking to and retention in BM through an E-selectin dependent event. These results indicate that alpha1,3 FTs could enhance metastatic efficiency of PCa by triggering an E-selectin-dependent trafficking mechanism.
Germinal centers (GC) are microanatomical niches where B cells proliferate, undergo antibody affinity maturation, and differentiate to long-lived memory B cells and antibody-secreting plasma cells. For decades, GC B cells have been defined by their reactivity to the plant lectin peanut agglutinin (PNA), which binds serine/threonine (O-linked) glycans containing the asialylated disaccharide Gal-ß1,3-GalNAc-Ser/Thr (also called T-antigen). In T cells, acquisition of PNA binding by activated T cells and thymocytes has been linked with altered tissue homing patterns, cell signaling, and survival. Yet, in GC B cells, the glycobiological basis and significance of PNA binding remains surprisingly unresolved. Here, we investigated the basis for PNA reactivity of GC B cells. We found that GC B cell binding to PNA is associated with downregulation of the α2,3 sialyltransferase, ST3GAL1 (ST3Gal1), and overexpression of ST3Gal1 was sufficient to reverse PNA binding in B cell lines. Moreover, we found that the primary scaffold for PNA-reactive O-glycans in B cells is the B cell receptor-associated receptor-type tyrosine phosphatase CD45, suggesting a role for altered O-glycosylation in antigen receptor signaling. Consistent with similar reports in T cells, ST3Gal1 overexpression in B cells in vitro induced drastic shortening in O-glycans, which we confirmed by both antibody staining and mass spectrometric O-glycomic analysis. Unexpectedly, ST3Gal1-induced changes in O-glycan length also correlated with altered binding of two glycosylation-sensitive CD45 antibodies, RA3-6B2 (more commonly called B220) and MEM55, which (in humans) have previously been reported to favor binding to naïve/GC subsets and memory/plasmablast subsets, respectively. Analysis of primary B cell binding to B220, MEM55, and several plant lectins suggested that B cell differentiation is accompanied by significant loss of O-glycan complexity, including loss of extended Core 2 O-glycans. To our surprise, decreased O-glycan length from naïve to post-GC fates best correlated not with ST3Gal1, but rather downregulation of the Core 2 branching enzyme GCNT1. Thus, our data suggest that O-glycan remodeling is a feature of B cell differentiation, dually regulated by ST3Gal1 and GCNT1, that ultimately results in expression of distinct O-glycosylation states / CD45 glycoforms at each stage of B cell differentiation.
Abstract Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.