We report the first complete characterization of single-qubit and two-qubit gate fidelities in silicon-based spin qubits, including cross-talk and error correlations between the two qubits. To do so, we use a combination of standard randomized benchmarking and a recently introduced method called character randomized benchmarking, which allows for more reliable estimates of the two-qubit fidelity in this system. Interestingly, with character randomized benchmarking, the two-qubit CPhase gate fidelity can be obtained by studying the additional decay induced by interleaving the CPhase gate in a reference sequence of single-qubit gates only. This work sets the stage for further improvements in all the relevant gate fidelities in silicon spin qubits beyond the error threshold for fault-tolerant quantum computation.
Identifying dominant sources of decoherence is an important step in understanding and improving quantum systems. Here we show that the free induction decay time ($T_{2}^{*}$) and the Rabi decay rate ($\Gamma_{\mathrm{Rabi}}$) of the quantum dot hybrid qubit are limited by charge noise for a large range of detunings. We show that by tuning the parameters of the qubit, and by operating the qubit at larger detunings, the coherence times can be increased by more than an order of magnitude. We achieve a Ramsey decay time $T_{2}^{*}$ of $127~\mathrm{ns}$ and a Rabi decay time, $1/\Gamma_{\mathrm{Rabi}}$, exceeding $1~\mathrm{\mu s}$. We show that the slowest $\Gamma_{\mathrm{Rabi}}$ is limited by fluctuations in the Rabi frequency induced by charge noise and not by fluctuations in the qubit energy itself.
In many neural culture studies, neurite migration on a flat, open surface does not reflect the three-dimensional (3D) microenvironment in vivo. With that in mind, we fabricated arrays of semiconductor tubes using strained silicon (Si) and germanium (Ge) nanomembranes and employed them as a cell culture substrate for primary cortical neurons. Our experiments show that the SiGe substrate and the tube fabrication process are biologically viable for neuron cells. We also observe that neurons are attracted by the tube topography, even in the absence of adhesion factors, and can be guided to pass through the tubes during outgrowth. Coupled with selective seeding of individual neurons close to the tube opening, growth within a tube can be limited to a single axon. Furthermore, the tube feature resembles the natural myelin, both physically and electrically, and it is possible to control the tube diameter to be close to that of an axon, providing a confined 3D contact with the axon membrane and potentially insulating it from the extracellular solution.
The equilibrium thermal roughening of thin Ge layers (one and two monolayers) deposited on Si(001) has been investigated with low-energy electron microscopy. A Ge-coverage-dependent roughening is observed. For two monolayers, the temperature at which imaging contrast is lost due to surface roughness is 900+/-25 degrees C, between the roughening temperatures of Ge(001) and Si(001). Lower Ge coverages move this temperature closer to that of Si(001). The roughening is confined to the Ge overlayers. It is believed that this phenomenon represents a new type of surface roughening transition that should be generally applicable for heteroepitaxial films.
Transport measurements at cryogenic temperatures through a few-electron top gated quantum dot fabricated in a silicon/silicon-germanium heterostructure are reported. Variations in gate voltage induce a transition from an isolated dot toward a dot strongly coupled to the leads. In addition to Coulomb blockade, when the dot is strongly coupled to the leads, the authors observe the appearance of a zero bias conductance peak due to the Kondo effect. The Kondo peak splits in a magnetic field, and the splitting scales linearly with the applied field. They also observe a transition from pure Coulomb blockade to peaks with a Fano line shape.
We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers ${S}^{2}=3/4$ ($S=1/2$) and ${S}_{z}=\ensuremath{-}1/2$, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.