For many arctic species, the spatial (re-)colonization patterns after the last Pleistocene glaciation have been described. However, the temporal aspects of their colonization are largely missing. Did one route prevail early, while another was more important later? The high Arctic archipelago Svalbard represents a good model system to address timeframe of postglacial plant colonization. Svalbard was almost fully glaciated during last glacial maximum and (re-)colonization of vascular plants began in early Holocene. Early Holocene climatic optimum (HCO) supported an expanded establishment of a partly thermophilic vegetation. Today, we find remnants of this vegetation in sheltered regions referred to as "Arctic biodiversity hotspots". The oldest record of postglacial plant colonization to Svalbard is found in Ringhorndalen-Flatøyrdalen. Even though thermophilic species could establish also later in Holocene, only HCO was favorable for vast colonization, and only hotspots offered stable conditions for thermophilic populations throughout Holocene. Thus, these relic populations may reflect colonization patterns of HCO. We investigate whether the colonization direction of thermophilic plants (Arnica angustifolia, Campanula uniflora, Pinguicula alpina, Tofieldia pusilla, and Vaccinium uliginosum ssp. microphyllum) in Ringhorndalen-Flatøyrdalen was uniform and different from later colonization events in other localities and non-thermophilic plants (Arenaria humifusa, Bistorta vivipara, Juncus biglumis, Oxyria digyna, and Silene acaulis). We analyzed plastid haplotypes of the 10 taxa from Ringhorndalen-Flatøyrdalen, from later-colonized localities in Svalbard, and from putative source regions outside Svalbard. Only rare and thermophilic taxa Campanula uniflora and Vaccinium uliginosum ssp. microphyllum provided results suggesting at least two colonization events from different source regions. Tofieldia pusilla and all the non-thermophilic plants showed no clear phylogeographically differentiation within Svalbard. Two of the thermophilic species showed no sequence variation. Based on the results, a uniform colonization direction to Svalbard in early Holocene is not probable; several source areas and dispersal directions were contemporarily involved.
Summary Soil conditions and microclimate are important determinants of the fine‐scale distribution of plant species in the Arctic, creating locally heterogeneous vegetation. We hypothesize that root‐associated fungal ( RAF ) communities respond to the same fine‐scale environmental gradients as the aboveground vegetation, creating a coherent pattern between aboveground vegetation and RAF . We explored how RAF communities of the ectomycorrhizal ( ECM ) plant Bistorta vivipara and aboveground vegetation structure of arctic plants were affected by biotic and abiotic variables at 0.3–3.0‐m scales. RAF communities were determined using pyrosequencing. Composition and spatial structure of RAF and aboveground vegetation in relation to collected biotic and abiotic variables were analysed by ordination and semi‐variance analyses. The vegetation was spatially structured along soil C and N gradients, whereas RAF lacked significant spatial structure. A weak relationship between RAF community composition and the cover of two ECM plants, B. vivipara and S. polaris , was found, and RAF richness increased with host root length and root weight. Results suggest that the fine‐scale spatial structure of RAF communities of B. vivipara and the aboveground vegetation are driven by different factors. At fine spatial scales, neighbouring ECM plants may affect RAF community composition, whereas soil nutrients gradients structure the vegetation.
The Arctic tundra biome is undergoing rapid shrub expansion ("shrubification") in response to anthropogenic climate change. During the previous ~2.6 million years, glacial cycles caused substantial shifts in Arctic vegetation, leading to changes in species' distributions, abundance, and connectivity, which have left lasting impacts on the genetic structure of modern populations. Examining how shrubs responded to past climate change using genetic data can inform the ecological and evolutionary consequences of shrub expansion today. Here we test scenarios of Quaternary population history of dwarf birch species (Betula nana L. and Betula Glandulosa Michx.) using SNP markers obtained from RAD sequencing and approximate Bayesian computation. We compare the timings of population events with ice sheet reconstructions and other paleoenvironmental information to untangle the impacts of alternating cold and warm periods on the phylogeography of dwarf birch. Our best supported model suggested that the species diverged in the Mid-Pleistocene Transition as glaciations intensified, and ice sheets expanded. We found support for a complex history of inter- and intraspecific divergences and gene flow, with secondary contact occurring during periods of both expanding and retreating ice sheets. Our spatiotemporal analysis suggests that the modern genetic structure of dwarf birch was shaped by transitions in climate between glacials and interglacials, with ice sheets acting alternatively as a barrier or an enabler of population mixing. Tundra shrubs may have had more nuanced responses to past climatic changes than phylogeographic analyses have often suggested, with implications for future eco-evolutionary responses to anthropogenic climate change.
Fifty candidate microsatellite markers, generated using 454 shotgun sequencing, were tested for the widespread arctic/alpine herb Silene acaulis (Caryophyllaceae).Fourteen out of 50 markers resulted in polymorphic products with profiles that enabled interpretation. The numbers of alleles per locus ranged from two to six, and the expected heterozygosity per locus ranged from 0.06 to 0.68. Analysis of F0 and F1 samples proved that one allele was always inherited maternally. Four multiplex mixes have been developed.Microsatellite markers for this species will be a valuable tool to study detailed small-scale genetic patterns in an arctic/alpine herb and to relate them to demographic parameters.
Abstract Aim Eric Hultén hypothesized that most arctic plants initially radiated from Beringia in the Late Tertiary and persisted in this unglaciated area during the Pleistocene glaciations, while their distribution ranges were repeatedly fragmented and reformed elsewhere. Whereas taxonomic and fossil evidence suggest that Cassiope tetragona originated in Beringia and expanded into the circumarctic area before the onset of the glaciations, lack of chloroplast DNA (cpDNA) variation may suggest that colonization was more recent. We address these contradictory scenarios using high‐resolution nuclear markers. Location Circumpolar Arctic. Methods The main analysis was by amplified fragment‐length polymorphism (AFLP), while sequences of chloroplast DNA verified the use of Cassiope mertensiana as an outgroup for C. tetragona. Data were analysed using Bayesian clustering, principal coordinates analyses, parsimony and neighbour‐joining, and measures of diversity and differentiation were calculated. Results The circumpolar C. tetragona ssp. tetragona was well separated from the North American C. tetragona ssp. saximontana . The genetic structure in ssp. tetragona showed a strong east–west trend, with the Beringian populations in an intermediate position. The highest level of diversity was in Beringia, while the strongest differentiation in the data set was found between the populations from the Siberian Arctic west of Beringia and the remainder. Main conclusions The results are consistent with a Beringian origin of the species, but the levels and geographical patterns of differentiation and gene diversity suggest that the latest expansion from Beringia into the circumarctic was recent, possibly during the current interglacial. The results are in accordance with a recent leading‐edge mode of colonization, particularly towards the east throughout Canada/Greenland and across the North Atlantic into Scandinavia and Svalbard. As fossils demonstrate the presence of the species in North Greenland 2.5–2.0 Ma, as well as in the previous interglacial, we conclude that C. tetragona expanded eastwards from Beringia several times and that the earlier emigrants of this woody species became extinct. The last major westward expansion from Beringia seems older, and the data suggest a separate Siberian refugium during at least one glaciation.
Abstract The circumarctic ranges of arctic‐alpine plants are thought to have been established in the late Pliocene/early Pleistocene, when the modern arctic tundra was formed in response to climate cooling. Previous findings of range‐wide genetic structure in arctic‐alpine plants have been thought to support this hypothesis, but few studies have explicitly addressed the temporal framework of the genetic structure. Here, we estimated the demographic history of the genetic structure in the circumarctic Kalmia procumbens using sequences of multiple nuclear loci and examined whether its genetic structure reflects prolonged isolation throughout the Pleistocene. Both Bayesian clustering and phylogenetic analyses revealed genetic distinction between alpine and arctic regions, whereas detailed groupings were somewhat discordant between the analyses. By assuming a population grouping based on the phylogenetic analyses, which likely reflects a deeper intraspecific divergence, we conducted model‐based analyses and demonstrated that the intraspecific genetic divergence in K . procumbens likely originated during the last glacial period. Thus, there is no need to postulate range separation throughout the Pleistocene to explain the current genetic structure in this species. This study demonstrates that range‐wide genetic structure in arctic‐alpine plants does not necessarily result from the late Pliocene/early Pleistocene origin of their circumarctic ranges and emphasizes the importance of a temporal framework of the current genetic structure for understanding the biogeographic history of the arctic flora.
The ability of species to track their ecological niche after climate change is a major source of uncertainty in predicting their future distribution. By analyzing DNA fingerprinting (amplified fragment-length polymorphism) of nine plant species, we show that long-distance colonization of a remote arctic archipelago, Svalbard, has occurred repeatedly and from several source regions. Propagules are likely carried by wind and drifting sea ice. The genetic effect of restricted colonization was strongly correlated with the temperature requirements of the species, indicating that establishment limits distribution more than dispersal. Thus, it may be appropriate to assume unlimited dispersal when predicting long-term range shifts in the Arctic.