Abstract In Washington State, climate change will reshape the Puget Sound marine ecosystem through bottom-up and top-down processes, directly affecting species at all trophic levels. To better understand future climate change effects on sea surface temperature and salinity in Puget Sound, we used empirical downscaling to derive high-resolution time series of future sea surface temperature and salinity. Downscaling was based on scenario outputs of two coarse-resolution General Circulation Models, GFDL-CM4 and CNRM-CM6-1-HR, developed as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6). We calculated 30-year climatologies for historical and future simulations, calculated the anomalies between historical and future projections, interpolated to a high resolution, and applied the resulting downscaled anomalies to a Regional Ocean Modeling System (ROMS) time series, yielding short-term (2020–2050) and long-term (2070–2100) delta-downscaled forecasts. Downscaled output for Puget Sound showed temperature and salinity variability between scenarios and models, but overall, there was strong model agreement. Model variability and uncertainty was higher for long-term projections. Spatially, we found regional differences for both temperature and salinity, including higher temperatures in the South Basin of Puget Sound and higher salinity in the North Basin. This study is a first step to translating CMIP6 outputs to higher resolution predictions of future conditions in Puget Sound. Interpreting downscaled projections of temperature and salinity in Puget Sound will help inform future ecosystem-based management decisions, such as supporting end-to-end ecosystem modeling simulations and assessing local-scale exposure risk to climate change.
Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modelling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modelling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au) end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while MPAs led to both 'winners' and 'losers' at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either OA or MPAs. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors' objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming).
Abstract As climate stressors are impacting marine ecosystems and fisheries across the world, ecosystem models that incorporate environmental variables are increasingly used to inform ecosystem-based fisheries management. The assumptions around the mechanistic links between climate stressors and the biological processes in these models are important, but the implications for model outcomes of which stressors are captured and how they affect modeled biological processes are seldom explored. Using a whole-ecosystem model (Atlantis) for the Gulf of Alaska, we explore the effects of capturing physical (increased temperature) and biogeochemical (decreased low trophic level productivity) climate stressors, and disentangle the effects of each stressor on the productivity of forage fish, groundfish, and fish-eating seabirds. We then test the effects of alternative model specifications of temperature-driven habitat determination and bioenergetics. Increased temperature resulted in increased weight-at-age and higher natural mortality, while decreased productivity resulted in decreased weight-at-age and higher natural mortality. Model specification of temperature dependence of movement and spawning influenced model outcomes, and decoupling these processes from temperature led to overly optimistic biomass predictions. As the use of ecosystem models to inform fisheries management becomes more operational, we illustrate that the assumptions around the links between climate stressors and ecological processes influence model outcomes.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI