Abstract Antibiotics present a pressing environmental challenge as emerging pollutants due to their persistence and role in promoting antibiotic-resistant bacteria. To model the utilization of Ganoderma lucidum GlLCC1 laccase in degrading antibiotics, a 3D homology model of GILCC1, based on Lentinus tigrinus mushroom laccase, was utilized. Five broad-spectrum WHO-designated antibiotics with molecular weights between 100 and 500 Da were selected. Molecular dynamics simulations were conducted at pH 3.0 and 7.0 to evaluate the interactions between GILCC1 and antibiotics in a TIP3P water box, with system behaviour assessed at 300 °K using an NPT assembly. ABTS (2,2ʹ-Azino-bis (3-ethylbenzthiazoline-6-sulfonic Acid)) served as the comparison molecule. The binding free energy indicated a strong affinity between 3D GILCC1 and various ligands. At pH 3.0, GILCC1 exhibited significant Gibbs free energy (ΔG), indicating a high affinity for Levofloxacin (LVX; −8.2 kcal mol −1 ), Sulfisoxazole (SFX; −7.8 kcal mol −1 ), Cefuroxime (CXM; −7.5 kcal mol −1 ), Cephradine (CFD; −7. 5 kcal mol −1 ), ABTS (−7.6 kcal mol −1 ), and Tetracycline (TE; −7.5 kcal mol −1 ), attributed to pocket topology and interactions such as hydrogen bonds and van der Waals forces. Electron transfer in GILCC1 involved a chain of residues, including His 395 and Phe 239 . Although the affinity decreased at pH 7.0, the potential of GILCC1 to degrade antibiotics remained plausible. This study accurately predicted the behaviour of the laccase-antibiotic system, providing atomic-level insights into molecular interactions and emphasizing the importance of experimental assays and assessments of antibiotic degradation in wastewater, considering various chemical compounds. The use of ABTS as a mediator was suggested to enhance molecule affinity. Graphical abstract
Laccases (E.C. 1.10.3.2) are multicopper oxidases of great importance in the industry due to their non-specificity and high oxidative potential. Laccases are useful to bleach synthetic dyes, oxidize phenolic compounds and degrade pesticides, among others. Hence, the objective of this work was to optimize low cost culture media for recombinant (rPOXA 1B) laccase production from Pleurotus ostreatus in Pichia pastoris. To this end, low cost nitrogen sources were studied, such as malt extract, isolated soy protein and milk serum. Following, two central composite designs (CCD) were performed. In CCD-1 different concentrations of glucose USP (0-13.35 gL-1), protein isolated soy protein (5-25 gL-1), malt extract (3.5-17.5 gL-1) and (NH4)2SO4 (1.3-6.5 gL-1) were evaluated. In CCD-2 only different concentrations of glucose USP (7.9-22 gL-1) and isolated soy protein (15.9-44.9 gL-1) were evaluated. CCD-2 results led to a One Factor Experimental design (OFED) to evaluate higher isolated soy protein (20-80 gL-1) concentrations. In all designs, (CCD-1, CCD-2 and OFED) CuSO4 (0.16 gL-1) and chloramphenicol (0.1 gL-1) concentrations remained unchanged. For the OFED after sequential statistical optimization, an enzyme activity of 12,877.3 ± 481.2 UL-1 at 168 h was observed. rPOXA 1B activity increased 30.54 % in comparison with CCD-2 results. Final composition of optimized media was: 20 gL-1 glucose USP, 50 gL-1 isolated soy protein 90 % (w/w), 11.74 gL-1 malt extract, and 4.91 gL-1 (NH4)2SO4. With this culture media, it was possible to reduce culture media costs by 89.84 % in comparison with improved culture media previously described by our group.
Abstract Background Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. Methods A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. Results In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t 1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an E d value of 41.40 KJ mol − 1 , a low variation of K M and V max , at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. Conclusions Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t 1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers.
Laccases (E.C. 1.10.3.2) are glycoproteins widely distributed in nature. Their structural conformation includes three copper sites in their catalytic center, which are responsible for facilitating substrate oxidation, leading to the generation of H2O instead of H2O2. The measurement of laccase activity (UL−1) results may vary depending on the type of laccase, buffer, redox mediators, and substrates employed. The aim was to select the best conditions for rGILCC 1 and rPOXA 1B laccases activity assay. After sequential statistical assays, the molecular dynamics proved to support this process, and we aimed to accumulate valuable insights into the potential application of these enzymes for the degradation of novel substrates with negative environmental implications. Citrate buffer treatment T2 (CB T2) (pH 3.0 ± 0.2; λ420nm, 2 mM ABTS) had the most favorable results, with 7.315 ± 0.131 UL−1 for rGILCC 1 and 5291.665 ± 45.83 UL−1 for rPOXA 1B. The use of citrate buffer increased the enzyme affinity for ABTS since lower Km values occurred for both enzymes (1.49 × 10−2 mM for rGILCC 1 and 3.72 × 10−2 mM for rPOXA 1B) compared to those obtained in acetate buffer (5.36 × 10−2 mM for rGILCC 1 and 1.72 mM for rPOXA 1B). The molecular dynamics of GILCC 1–ABTS and POXA 1B–ABTS showed stable behavior, with root mean square deviation (RMSD) values not exceeding 2.0 Å. Enzyme activities (rGILCC 1 and rPOXA 1B) and 3D model–ABTS interactions (GILCC 1–ABTS and POXA 1B–ABTS) were under the strong influence of pH, wavelength, ions, and ABTS concentration, supported by computational studies identifying the stabilizing residues and interactions. Integration of the experimental and computational approaches yielded a comprehensive understanding of enzyme–substrate interactions, offering potential applications in environmental substrate treatments.
Abstract The purpose of this study was to demonstrate that methanol addition after glucose depletion has a positive effect on improving rPOXA 1B production under the control of pGap in P. pastoris. Four different culture media (A, B, C and D) were used to culture P. pastoris X33/ pGapZα A- LaccPost-Stop (clone 1), containing a previously optimized POXA 1B synthetic gene coding for P. ostreatus laccase, which after glucose depletion was supplemented or not with methanol. Enzyme activity in culture media without methanol (A, B, C and D) was influenced by media components, presenting activity of 1254.30 ± 182.44, 1373.70 ± 182.44, 1343.50 ± 40.30 and 8771.61 ± 218.79 U L −1 , respectively. In contrast, the same culture media (A, B, C and D) with methanol addition 24 h after glucose depletion attained activity of 4280.43 ± 148.82, 3339.02 ± 64.36, 3569.39 ± 68.38 and 14,868.06 ± 461.58 U L −1 at 192 h, respectively, representing an increase of approximately 3.9-, 2.4-, 3.3- and 1.6-fold compared with culture media without methanol. Methanol supplementation had a greater impact on volumetric enzyme activity in comparison with biomass production. We demonstrated what was theoretically and biochemically expected: recombinant protein production under pGap control by methanol supplementation after glucose depletion was successful, as a feasible laboratory production strategy of sequential carbon source addition, breaking the habit of utilizing pGap with glucose.
espanolLas rizobacterias promotoras de crecimiento vegetal son reconocidas y estudiadas por sus efectos beneficos en varios cultivos. Cepas de los generos Azotobacter y Pseudomonas se aislaron de suelo rizosferico de cultivos de arroz (Oryza sativa L.) de 10 fincas en el distrito de riego del rio Zulia, Norte de Santander, Colombia. El aislamiento bacteriano se hizo a partir de granulos de suelo y diluciones seriadas de suelo, sembradas en agar Ashby para Azotobacter y King B para Pseudomonas fluorescentes, respectivamente. Cuarenta y dos aislamientos se conservaron en viales con solucion salina esteril (0.85 % NaCl) en refrigeracion a 4 °C y se ingresaron al Banco de Cepas del Laboratorio de Investigaciones en Biologia Aplicada de la Universidad Francisco de Paula Santander, Cucuta, Colombia. Para seleccionar aislamientos con potencial para el desarrollo de inoculantes microbianos, en todas las cepas se determino su capacidad de solubilizacion de fosfato inorganico, fijacion biologica de nitrogeno, sintesis de acido indoloacetico y sideroforos. Con un conglomerado jerarquico de las medianas de las cuatro actividades se seleccionaron cuatro aislamientos por presentar los valores mas cercanos a los testigos disenados como cepas promisorias en las cuatro actividades segun el dendrograma de similitudes. Estas cuatro cepas se identificaron como Pseudomonas putida (RzA027 y RzA035), Azotobacter chrococcum (RzA040) y Azotobacter tropicalis (RzA042) mediante amplificacion del gen 16S ADNr. EnglishThe plant-growth promoting rhizobacteria are recognized and studied for their beneficial effects on several crops. Strains of the Azotobacter and Pseudomonas genera were isolated from rhizospheric soil where rice crops (Oryza sativa L.) are grown, from 10 farms located in the Zulia River’s irrigation district, Norte de Santander, Colombia. The bacterial isolation was obtained from granular soil and serial soil dilutions, which were planted on Ashby and King B agar, for Azotobacter and fluorescent Pseudomonas, respectively. Forty-two isolates were stored in vials with a sterile saline solution (0.85 % NaCl) in a refrigerator at 4 °C and were deposited in the Bank of Strains of the Applied Biology Research Laboratory of the Universidad Francisco de Paula Santander, Cucuta, Colombia. The capacity to solubilize inorganic phosphate, to fix biological nitrogen, and to synthesize indoleacetic acid and siderophores were determined in all strains, in order to select isolates with potential to develop microbial inoculum. With a hierarchical clustering of the medians of the four activities, four isolations were selected because they presented the closest values to the controls designed as promising strains in the four activities, according to the similarity dendrogram. These four strains were identified as Pseudomonas putida (RzA027 and RzA035), Azotobacter chrococcum (RzA040), and Azotobacter tropicalis (RzA042), by amplification of the 16S rDNA gene.
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal