Abstract Mice hemizygous (Xsf/Y) for the X-linked mutation scurfy (sf) develop a severe and rapidly fatal lymphoproliferative disease mediated by CD4+CD8− T lymphocytes. We have undertaken phenotypic and functional studies to more accurately identify the immunologic pathway(s) affected by this important mutation. Flow cytometric analyses of lymphoid cell populations reveal that scurfy syndrome is characterized by changes in several phenotypic parameters, including an increase in Mac-1+ cells and a decrease in B220+ cells, changes that may result from the production of extremely high levels of the cytokine granulocyte-macrophage CSF by scurfy T cells. Scurfy T cells also exhibit strong up-regulation of cell surface Ags indicative of in vivo activation, including CD69, CD25, CD80, and CD86. Both scurfy and normal T cells are responsive to two distinct signals provided by the TCR and by ligation of CD28; scurfy cells, however, are hyperresponsive to TCR ligation and exhibit a decreased requirement for costimulation through CD28 relative to normal controls. This hypersensitivity may result, in part, from increased costimulation through B7-1 and B7-2, whose expression is up-regulated on scurfy T cells. Although the specific defect leading to this hyperactivation has not been identified, we also demonstrate that scurfy T cells are less sensitive than normal controls to inhibitors of tyrosine kinases such as genistein and herbimycin A, and the immunosuppressant cyclosporin A. One interpretation of our data would suggest that the scurfy mutation results in a defect, which interferes with the normal down-regulation of T cell activation.
IC14 (atibuclimab) is a monoclonal anti-CD14 antibody. A previous phase 1 trial of 10 participants with amyotrophic lateral sclerosis (ALS) demonstrated initial safety of IC14 in an acute treatment setting. We provided long-term treatment with IC14 to individuals with ALS via an expanded access protocol (EAP) and documented target engagement, biomarker, safety, and disease endpoints.Participants received intravenous IC14 every 2 weeks. Consistent with United States Food and Drug Administration guidelines, participants were not eligible for clinical trials and the EAP was inclusive of a broad population. Whole blood and serum were collected to determine monocyte CD14 receptor occupancy (RO), IC14 levels, and antidrug antibodies. Ex vivo T-regulatory functional assays were performed in a subset of participants.Seventeen participants received IC14 for up to 103 weeks (average, 30.1 weeks; range, 1 to 103 weeks). Treatment-emergent adverse events (TEAEs) were uncommon, mild, and self-limiting. There were 18 serious adverse events (SAEs), which were related to disease progression and unrelated or likely unrelated to IC14. Three participants died due to disease progression. Monocyte CD14 RO increased for all participants after IC14 infusion. One individual required more frequent dosing (every 10 days) to achieve over 80% RO. Antidrug antibodies were detected in only one participant and were transient, low titer, and non-neutralizing.Administration of IC14 in ALS was safe and well-tolerated in this intermediate-size EAP. Measuring RO guided dosing frequency. Additional placebo-controlled trials are required to determine the efficacy of IC14 in ALS.
The csk gene encodes a nonreceptor protein tyrosine kinase that acts in part by regulating the activity of src-family protein tyrosine kinases. Since the src-family kinases p56lck and p59fyn play pivotal roles during lymphocyte development, it seemed plausible that p50csk might contribute to these regulatory circuits. Using a gene targeting approach, mouse embryonic stem cell lines lacking functional csk genes were generated. These csknull embryonic stem cells proved capable of contributing to many adult tissues, notably heart and brain. However, although csknull progenitors colonized the developing thymus, T and B cell differentiation were both blocked at very early stages. This represented a relatively selective interdiction of lymphocyte maturation, since csknull hematopoietic progenitors supported the development of normal-appearing MAC-1+ blood leukocytes, and the successful maturation of granulocyte/macrophage-colony-forming units from fetal liver progenitors. We conclude that p50csk regulates normal lymphocyte differentiation, but that it almost certainly does so by acting on targets other than p56lck and p59fyn.
The primary objective was to demonstrate the safety and tolerability of monoclonal antibody against CD14 (IC14) (atibuclimab) in amyotrophic lateral sclerosis patients. The secondary objectives were pharmacokinetics, pharmacodynamics, and preliminary effects on disease status and biomarkers.In this open-label, dose-escalation trial, IC14 was administered at 2 mg/kg intravenous (IV) followed by 1 mg/kg/d IV × 3 (n = 3) and in subsequent patients at 4 mg/kg IV followed by 2 mg/kg/d IV × 3 (n = 7) (NCT03487263). Disease status was measured using the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, forced vital capacity, sniff nasal pressure, Edinburgh Cognitive and Behavioural ALS Screen, and Revised ALS-Specific Quality-of-Life Score. Disease biomarkers included cerebrospinal fluid and serum levels of neurofilament light chain (NfL) and urinary p75 neurotrophin receptor.IC14 was safe and well tolerated. No antidrug antibodies were detected. The drug target saturation of monocyte CD14 receptors was rapid and sustained through day 8. There was no significant change in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, forced vital capacity, sniff nasal pressure, or Revised ALS-Specific Quality-of-Life Score following a single cycle of treatment. Cerebrospinal fluid NfL levels decreased in 6 of 9 patients sampled with declines of 15% to 40% between baseline (not significant [ns]) and day 8 in 3 patients. Serum NfL modestly decreased in 5 of 10 patients (ns) at day 8 and was sustained in 4 (4%-37%, ns) over 33 days of follow up.IC14 quickly and durably saturated its target in all patients. This study demonstrated safety and tolerability in patients with amyotrophic lateral sclerosis. Even though only a single cycle of treatment was given, there were promising beneficial trends in the neurofilament light chain, a disease biomarker. The emerging understanding of the role of systemic inflammation in neurodegenerative diseases, and the potential for IC14 to serve as a safe, potent, and broad-spectrum inhibitor of immune dysregulation merits further clinical study.NCT03487263.
The aim of this study was to ascertain whether different types of T-cell receptor (TCR)-mediated [Ca2+]i signals could begin to explain the different cellular responses of mature and immature T cells to ligation of the TCR-CD3 complex. Using a digital fluorescence imaging system, we measured and compared [Ca2+]i of individual cells from immature and mature murine T-cell populations following application of CD3-epsilon monoclonal antibody (mAb). Our approach revealed distinctions among developmental subsets which were not seen by previous measurements of [Ca2+]i in bulk cell populations. The CD3-mediated [Ca2+]i responses of individual thymocytes were very complex. Latencies to peak [Ca2+]i varied greatly among thymocytes, but the responses of splenic T cells were synchronized, novel evidence that the timing of [Ca2+]i responses may be an important informative parameter for TCR-CD3 signalling. In addition, among cells responding to CD3 mAb, higher peak [Ca2+]i responses correlated with maturity (CD4+ CD8+ thymocytes < single-positive thymocytes < splenic T cells). Examination of cells from pp59fyn-deficient mice showed that pp59fyn deficiency affects the amplitude and probability, but not the latency or synchrony, of CD3-mediated [Ca2+]i responses of CD4+ CD8+ and CD4+ CD8- thymocytes. All subsets showed equivalent receptor-independent mobilization of [Ca2+]i. These developmentally distinct [Ca2+]i features most probably reflect meaningful developmental changes in how the TCR-CD3 complex couples to intracellular signalling machinery including pp59fyn. By clearly showing how [Ca2+]i responses change during development, these results support the hypothesis that distinctive types of [Ca2+]i responses drive thymocyte differentiation.
Abstract Hematopoietic protein-1 (Hem-1) is a hematopoietic cell-specific member of the Hem-family of cytoplasmic adaptor proteins. Orthologs of Hem-1 in flies and worms are essential for cytoskeletal reorganization, embryonic cell migration, and morphogenesis. However, the in vivo functions of mammalian Hem-1 are not known. Using a chemical mutagenesis strategy in mice to identify novel immune function genes, we positionally-cloned a nonsense mutation in the Hem1 gene. Loss of Hem-1 results in defective F-actin polymerization and actin capping in T lymphocytes and neutrophils, due to loss of the Rac GTPase-controlled actin-regulatory "WAVE" complex. T cell development and activation are impaired. Hem1-/- neutrophils are deficient in migration and phagocytic capacity. Conventional "B2" B cell development is inhibited at the pro-B and transitional T1 cell stages, and "B1" B cell development is also impaired. ELISA and ImageStream flow cytometric analyses reveal that NF-¿B-dependent transcription of proinflammatory cytokines, proceed normally in Hem1-/- mice, while TH17 differentiation is enhanced. These results demonstrate that Hem1 is essential for hematopoietic cell development and function by controlling cytoskeletal reorganization.