T lymphocytes may play a regulatory role in the development of allergic airway hyperresponsiveness (AHR). We have studied the relationship between airway responsiveness and a number of immunological changes in Brown-Norway rats sensitized intraperitoneally and repeatedly exposed to ovalbumin (OVA) aerosol. Acetylcholine provocation concentration (PC)150 (the concentration of acetylcholine causing a 150% increase of base-line lung resistance) was measured and peripheral blood and bronchoalveolar lavage (BAL) cells were collected 18-24hr after the final exposure. Total and OVA-specific IgE in serum was measured by enzyme-linked immunosorbent assay (ELISA). Mononuclear cells were analysed by flow cytometry after labelling with monoclonal antibodies against CD2 (pan T-cell marker), CD4, CD8 (T-cell subsets) or CD25 (interleukin-2 receptor). There were significant differences in PC150 (P < 0.05) and in OVA-specific IgE levels in serum (P < 0.002); CD4+ T cells expressed a significantly increased level of CD25 immunoreactivity in BAL, but not in peripheral blood, of rats sensitized and exposed to OVA, compared with saline-exposed controls (P < 0.02). There was a significant correlation between CD25 expression and BAL eosinophil numbers (r = 0.74, P < 0.001), PC150 (r = 0.63, P < 0.003) and OVA-specific IgE (r = 0.77, P < 0.001). These data suggest that activated T cells may be involved in the regulation of allergen-induced AHR in a relevant animal model of allergic asthma.
We have generated transgenic mice that constitutively express murine interleukin (IL)-5 in the lung epithelium. Airway expression of this cytokine resulted in a dramatic accumulation of peribronchial eosinophils and striking pathologic changes including the expansion of bronchusassociated lymphoid tissue (BALT), goblet cell hyperplasia, epithelial hypertrophy, and focal collagen deposition. These changes were also accompanied by eosinophil infiltration of the airway lumen. In addition, transgenic animals displayed airway hyperresponsiveness to methacholine in the absence of aerosolized antigen challenge. These findings demonstrate that lung-specific IL-5 expression can induce pathologic changes characteristic of asthma and may provide useful models to evaluate the efficacy of potential respiratory disease therapies or pharmaceuticals.
Authors report here an interesting case of a woman who has been treated for essential hypertension for 12 years. Beside the hypertension, an extreme virilization appeared. A large adenoma, originated from the left adrenal gland have been explored behind the clinical picture. After surgical removal of the adenoma, adrenocortical hormones decreased to the normal levels. Systemic blood pressure decreased considerably the virilisation showed gradual involution. The correct treatment of the patient was a decade late, resulting in the development of encephalopathic syndromes.
The pulmonary surfactant protein A (SP-A) is a constitutively expressed immune-protective collagenous lectin (collectin) in the lung. It binds to the cell membrane of immune cells and opsonizes infectious agents such as bacteria, fungi, and viruses through glycoprotein binding. SARS-CoV-2 enters airway epithelial cells by ligating the Angiotensin Converting Enzyme 2 (ACE2) receptor on the cell surface using its Spike glycoprotein (S protein). We hypothesized that SP-A binds to the SARS-CoV-2 S protein and this binding interferes with ACE2 ligation. To study this hypothesis, we used a hybrid quantum and classical in silico modeling technique that utilized protein graph pruning. This graph pruning technique determines the best binding sites between amino acid chains by utilizing the Quantum Approximate Optimization Algorithm (QAOA)-based MaxCut (QAOA-MaxCut) program on a Near Intermediate Scale Quantum (NISQ) device. In this, the angles between every neighboring three atoms were Fourier-transformed into microwave frequencies and sent to a quantum chip that identified the chemically irrelevant atoms to eliminate based on their chemical topology. We confirmed that the remaining residues contained all the potential binding sites in the molecules by the Universal Protein Resource (UniProt) database. QAOA-MaxCut was compared with GROMACS with T-REMD using AMBER, OPLS, and CHARMM force fields to determine the differences in preparing a protein structure docking, as well as with Goemans-Williamson, the best classical algorithm for MaxCut. The relative binding affinity of potential interactions between the pruned protein chain residues of SP-A and SARS-CoV-2 S proteins was assessed by the ZDOCK program. Our data indicate that SP-A could ligate the S protein with a similar affinity to the ACE2-Spike binding. Interestingly, however, the results suggest that the most tightly-bound SP-A binding site is localized to the S2 chain, in the fusion region of the SARS-CoV-2 S protein, that is responsible for cell entry Based on these findings we speculate that SP-A may not directly compete with ACE2 for the binding site on the S protein, but interferes with viral entry to the cell by hindering necessary conformational changes or the fusion process.
In a mouse model of the human disease pulmonary lymphangioleiomyomatosis, treatment with rapamycin plus simvastatin prevented alveolar space enlargement and growth of TSC2-null lesions.
Ozone exposure induces airway neutrophilia and modifies innate immune monocytic cell-surface phenotypes in healthy individuals. High-dose inhaled corticosteroids can reduce O(3)-induced airway inflammation, but their effect on innate immune activation is unknown.We used a human O(3) inhalation challenge model to examine the effectiveness of clinically relevant doses of inhaled corticosteroids on airway inflammation and markers of innate immune activation in healthy volunteers.Seventeen O(3)-responsive subjects [>10% increase in the percentage of polymorphonuclear leukocytes (PMNs) in sputum, PMNs per milligram vs. baseline sputum] received placebo, or either a single therapeutic dose (0.5 mg) or a high dose (2 mg) of inhaled fluticasone proprionate (FP) 1 hr before a 3-hr O(3) challenge (0.25 ppm) on three separate occasions at least 2 weeks apart. Lung function, exhaled nitric oxide, sputum, and systemic biomarkers were assessed 1-5 hr after the O(3) challenge. To determine the effect of FP on cellular function, we assessed sputum cells from seven subjects by flow cytometry for cell-surface marker activation.FP had no effect on O(3)-induced lung function decline. Compared with placebo, 0.5 mg and 2 mg FP reduced O(3)-induced sputum neutrophilia by 18% and 35%, respectively. A similar effect was observed on the airway-specific serum biomarker Clara cell protein 16 (CCP16). Furthermore, FP pretreatment significantly reduced O(3)-induced modification of CD11b, mCD14, CD64, CD16, HLA-DR, and CD86 on sputum monocytes in a dose-dependent manner.This study confirmed and extended data demonstrating the protective effect of FP against O(3)-induced airway inflammation and immune cell activation.