Notch signaling plays a fundamental role in determining the outcome of differentiation processes in many tissues. Notch signaling has been implicated in T versus B cell lineage commitment, thymic differentiation, and bone marrow hematopoietic precursor renewal and differentiation. Notch receptors and their ligands are also expressed on the surface of mature lymphocytes and APCs, but the effects of Notch signaling in the peripheral immune system remain poorly defined. The aim of the studies reported here was to investigate the effects of signaling through the Notch receptor using a ligand of the Delta-like family. We show that Notch ligation in the mature immune system markedly decreases responses to transplantation antigens. Constitutive expression of Delta-like 1 on alloantigen-bearing cells renders them nonimmunogenic and able to induce specific unresponsiveness to a challenge with the same alloantigen, even in the form of a cardiac allograft. These effects could be reversed by depletion of CD8+ cells at the time of transplantation. Ligation of Notch on splenic CD8+ cells results in a dramatic decrease in IFN-γ with a concomitant enhancement of IL-10 production, suggesting that Notch signaling can alter the differentiation potential of CD8+ cells. These data implicate Notch signaling in regulation of peripheral immunity and suggest a novel approach for manipulating deleterious immune responses.
Tolinapant (ASTX660) is a potent, nonpeptidomimetic antagonist of cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) and X-linked IAP, which is currently being evaluated in a phase 2 study in T-cell lymphoma (TCL) patients. Tolinapant has demonstrated evidence of single-agent clinical activity in relapsed/refractory peripheral TCL and cutaneous TCL. To investigate the mechanism of action underlying the single-agent activity observed in the clinic, we have used a comprehensive translational approach integrating in vitro and in vivo models of TCL confirmed by data from human tumor biopsies. Here, we show that tolinapant acts as an efficacious immunomodulatory molecule capable of inducing complete tumor regression in a syngeneic model of TCL exclusively in the presence of an intact immune system. These findings were confirmed in samples from our ongoing clinical study showing that tolinapant treatment can induce changes in gene expression and cytokine profile consistent with immune modulation. Mechanistically, we show that tolinapant can activate both the adaptive and the innate arms of the immune system through the induction of immunogenic forms of cell death. In summary, we describe a novel role for IAP antagonists as immunomodulatory molecules capable of promoting a robust antitumor immune response in TCL.