The advent of advanced AI underscores the urgent need for comprehensive safety evaluations, necessitating collaboration across communities (i.e., AI, software engineering, and governance).However, divergent practices and terminologies across these communities, combined with the complexity of AI systems-of which models are only a part-and environmental affordances (e.g., access to tools), obstruct effective communication and comprehensive evaluation.This paper proposes a framework for AI system evaluation comprising three components: 1) harmonised terminology to facilitate communication across communities involved in AI safety evaluation; 2) a taxonomy identifying essential elements for AI system evaluation; 3) a mapping between AI lifecycle, stakeholders, and requisite evaluations for accountable AI supply chain.This framework catalyses a deeper discourse on AI system evaluation beyond model-centric approaches.
Artificial Intelligence (AI) is a widely developed and adopted technology across entire industry sectors. Integrating environmental, social, and governance (ESG) considerations with AI investments is crucial for ensuring ethical and sustainable technological advancement. Particularly from an investor perspective, this integration not only mitigates risks but also enhances long-term value creation by aligning AI initiatives with broader societal goals. Yet, this area has been less explored in both academia and industry. To bridge the gap, we introduce a novel ESG-AI framework, which is developed based on insights from engagements with 28 companies and comprises three key components. The framework provides a structured approach to this integration, developed in collaboration with industry practitioners. The ESG-AI framework provides an overview of the environmental and social impacts of AI applications, helping users such as investors assess the materiality of AI use. Moreover, it enables investors to evaluate a company's commitment to responsible AI through structured engagements and thorough assessment of specific risk areas. We have publicly released the framework and toolkit in April 2024, which has received significant attention and positive feedback from the investment community. This paper details each component of the framework, demonstrating its applicability in real-world contexts and its potential to guide ethical AI investments.
The rapid advancement of Artificial Intelligence (AI), represented by ChatGPT, has raised concerns about responsible AI development and utilization. Existing frameworks lack a comprehensive synthesis of AI risk assessment questions. To address this, we introduce QB4AIRA, a novel question bank developed by refining questions from five globally recognized AI risk frameworks, categorized according to Australia's AI ethics principles. QB4AIRA comprises 293 prioritized questions covering a wide range of AI risk areas, facilitating effective risk assessment. It serves as a valuable resource for stakeholders in assessing and managing AI risks, while paving the way for new risk frameworks and guidelines. By promoting responsible AI practices, QB4AIRA contributes to responsible AI deployment, mitigating potential risks and harms.
Artificial Intelligence (AI), particularly through the advent of large-scale generative AI (GenAI) models such as Large Language Models (LLMs), has become a transformative element in contemporary technology. While these models have unlocked new possibilities, they simultaneously present significant challenges, such as concerns over data privacy and the propensity to generate misleading or fabricated content. Current frameworks for Responsible AI (RAI) often fall short in providing the granular guidance necessary for tangible application, especially for Accountability---a principle that is pivotal for ensuring transparent and auditable decision-making, bolstering public trust, and meeting increasing regulatory expectations. This study bridges the Accountability gap by introducing our effort towards a comprehensive metrics catalogue, formulated through a systematic multivocal literature review (MLR) that integrates findings from both academic and grey literature. Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems. This tripartite framework is designed to operationalize Accountability in AI, with a special emphasis on addressing the intricacies of GenAI.
In the era of advanced artificial intelligence, highlighted by large-scale generative models like GPT-4, ensuring the traceability, verifiability, and reproducibility of datasets throughout their lifecycle is paramount for research institutions and technology companies. These organisations increasingly rely on vast corpora to train and fine-tune advanced AI models, resulting in intricate data supply chains that demand effective data governance mechanisms. In addition, the challenge intensifies as diverse stakeholders may use assorted tools, often without adequate measures to ensure the accountability of data and the reliability of outcomes. In this study, we adapt the concept of ``Software Bill of Materials" into the field of data governance and management to address the above challenges, and introduce ``Data Bill of Materials" (DataBOM) to capture the dependency relationship between different datasets and stakeholders by storing specific metadata. We demonstrate a platform architecture for providing blockchain-based DataBOM services, present the interaction protocol for stakeholders, and discuss the minimal requirements for DataBOM metadata. The proposed solution is evaluated in terms of feasibility and performance via case study and quantitative analysis respectively.
The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.