We report herein the synthesis of new glycoporphyrin ligands which bear a glucopyranoside derivative on each meso-aryl moiety of the porphyrin skeleton. The saccharide unit is directly conjugated to the porphyrin or a triazole spacer is placed between the carbohydrate and porphyrin ring. The obtained glycoporphyrin ligands were employed to synthesize cobalt(II), ruthenium(II), and iron(III) complexes which were tested as catalysts of C–H bond aminations by organic azides. Two of the synthesized complexes were very efficient in promoting catalytic reactions, and the results achieved indicated that ruthenium and iron complexes show an interesting complementary catalytic activity in several amination reactions. The eco-friendly iron catalyst displayed very good chemical stability in catalyzing the amination reaction for three consecutive runs without losing catalytic activity.
Photovoltaics is a promising technology to produce sustainable energy, thanks to the high amount of energy emitted by the sun. One way of having solar cells with low production costs is to apply thin-film technology and with earth-abundant raw materials. A keen interest is arising in kesterite compounds, which are chalcogenides composed of abundant and non-toxic elements. They have already achieved excellent performance at the laboratory level. Here, we report the synthesis and characterization of mixed chalcogenides based on copper, zinc, iron, and tin. Solutions have been studied with different zinc and iron ratios. The distortion of the elementary cell of kesterite increases with the addition of iron until a phase transition to stannite occurs. The process of synthesis and deposition proposed herein is cheap and straightforward, based on the sol-gel technique. These thin films are particularly attractive for use in cheap and easily processable solar cells. The synthesized layers have been characterized by X-ray diffraction, UV-Vis absorption, and Raman, X-ray photoelectron, and energy-dispersive X-ray spectroscopy measurements.
Lead halide perovskites have been revolutionary in the last decade in many optoelectronic sectors. Their bismuth-based counterparts have been considered a good alternative thanks to their composition of earth-abundant elements, good chemical stability, and low toxicity. Moreover, their electronic structure is in a quasi-zero-dimensional (0D) configuration, and they have recently been explored for use beyond optoelectronics. A significant limitation in applying thin-film technology is represented by the difficulty of synthesizing compact layers with easily scalable methods. Here, the engineering of a two-step synthesis in an air of methylammonium bismuth iodide compact thin films is reported. The critical steps of the process have been highlighted so that the procedure can be adapted to different substrates and application areas.
Cu2ZnSnS4 (CZTS) is a promising absorber material to produce thin film solar cells thanks to its high absorption coefficient, low cost and low toxicity. CdS is commonly used as a buffer layer for CZTS solar cells but, beyond its toxicity, it has a nonoptimal band alignment with CZTS. ZnxSn1−xO (ZTO), based on earth-abundant and nontoxic elements and with a large and tunable band gap, is a suitable alternative buffer layer. In this paper, the atomic layer deposition (ALD) of ZTO was employed by testing different compositions and thicknesses. ALD not only leads to very compact and homogenous ZTO layers (enabling tuning the stoichiometry of the ZTO so prepared) but also makes the i-ZnO layer (usually sandwiched between the buffer layer and the transparent contact) redundant and detrimental. Through SCAPS simulation and impedance measurements, the ZnSnO/AZO interface impact on the Cd-free kesterite solar cells’ performances has been investigated, highlighting its leading role in achieving an effective charge extraction and the detrimental effect of the i-ZnO layer. With this approach, a solar cell based on an architecture simpler and more eco-friendly than the conventional one has been produced with comparable efficiencies.
Thin film photovoltaic devices based on CdTe and Cu(In,Ga)Se2 find in Cu2ZnSn(S,Se)4-based technology a more eco-friendly alternative. To further reduce production costs and improve sustainability, other abundant metals, such as manganese, can be tested as a potential alternative to zinc. Mn is a safe and Earth-abundant element, and it can be used in light absorber materials when it is part of quaternary chalcogenides with copper and tin. This work reports on the growth and characterization of Cu2MnSnS4 thin films produced by a two-step deposition process. The metallic precursors have been deposited by sputtering and the stack annealed at high temperatures in sulphur atmosphere. The layers, obtained in Cu-poor Mn-poor compositional regime, have been tested in solar devices with a record efficiency of 1.13% and a high open-circuit voltage of about 445 mV delivered by the champion device after over one year from the first PV measurement. X-ray diffraction and X-ray photoelectron, Raman, photoluminescence, and admittance spectroscopies have been used to investigate the Cu2MnSnS4 defectivity, and a scenario of high defects has emerged. Therefore, to promote the development of Mn-based photovoltaics the synthesis methodology should be optimized and the device architecture should be specifically designed for the compound.
Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society. However, the true progress of the given technology is hindered by the sluggish and complex hydrogen evolution reaction (HER) occurring at the cathodic side of the system where overpriced and scarce Pt-based electrocatalysts are usually employed. Therefore, efficient platinum group metals (PGMs)-free electrocatalysts to carry out HER with accelerated kinetics are urgently demanded. In this scenario, molybdenum disulfide (MoS2) owing to efficacious structural attributes and optimum hydrogen-binding free energy (ΔGH*) is emerging as a reliable alternative to PGMs. However, the performance of MoS2-based electrocatalysts is still far away from the benchmark performance. The HER activity of MoS2 can be improved by engineering the structural parameters i.e., doping, defects inducement, modulating the electronic structure, stabilizing the 1T phase, creating nanocomposites, and altering the morphologies using appropriate fabrication pathways. Here, we have comprehensively reviewed the majority of the scientific endeavors published in recent years to uplift the HER activity of MoS2-based electrocatalysts using different methods. Advancements in the major fabrication strategies including hydrothermal synthesis methods, chemical vapor deposition, exfoliation techniques, plasma treatments, chemical methodologies, etc. to tune the structural parameters and hence their ultimate influence on the electrocatalytic activity in acidic and/or alkaline media have been thoroughly discussed. This study can provide encyclopedic insights about the fabrication routes that have been pursued to improve the HER performance of MoS2-based electrocatalysts.