Abstract A famous hard-template method (HT), coprecipitation method (PC), and complex method (CA) were used to prepare CeCu composite oxide catalysts. The prepared catalysts were characterized via XRD, BET, Raman, XPS, FI–IR, and O 2 –TPD, and their catalytic activity and stability were evaluated for the propyl acetate catalytic combustion. The results showed that the CeCu oxide solid solution and oxygen vacancies were formed in the prepared CeCu oxide catalysts, even for CeCu–PC and CeCu–CA having a specific amount of isolated crystalline or amorphous CuO species. Comparing with the CeCu–PC and CeCu–CA of low porosity, CeCu–HT developed a mesoporous structure with a much larger specific surface area through a negative replica on the structure of KIT-6, and in it, CuO was completely dissolved in the CeO 2 lattice to form more CeCu oxide solid solution and a large amount of oxygen vacancies. As a result, the CeCu–HT catalyst has more surface-adsorbed oxygen species, more –OH group which can also change into surface-adsorbed oxygen species at relatively high temperatures, higher oxygen desorption ability, and higher oxygen mobility than CeCu–PC and CeCu–CA. The CeCu–HT catalyst shows high and stable propyl acetate catalytic combustion performance at 190 °C. The propyl acetate catalytic combustion activity on the prepared CeCu oxide catalysts can be ranked as: CeCu–HT > CeCu–PC > CeCu–CA, which follows the orders of CeCu oxide solid solution content, surface-active oxygen content, and oxygen desorption and mobility of the CeCu composite oxide catalysts.
According to Fermat tenet, this paper deduces an equation of the protruding side of flat convex lens which can focus parallel lights perfectly and trace its shape with the help of computer aids such as electronic tables.
In this paper,the author infers the general formula of the combined light intensity and discusses the necessities of light waves,and points out some mistakes in many optics textbooks.
A wideband magneto-electric (ME) dipole with characteristics of dual-circular polarization is presented in this paper.The proposed antenna is composed of four horizontal radiation patches, four pairs of vertical radiation patches, a ground plane, a pair of wideband feeding networks, and novel crossed feeding structures which work as wideband 3-stage impedance matching transitions.The feeding networks which contain a Wilkinson power divider and a coupled-line phase shifter are printed on the bottom of the ground plane, and they can provide stable two-way output wideband signals with quadrature-phase.The proposed antenna works as a ME dipole with a wide operation bandwidth of 53.2% (S 11 < -10 dB, and Axial Ratio (AR) < 3 dB) from 1.71 GHz to 2.95 GHz for right-hand circular polarization (RHCP) and 62% from 1.7 GHz to 3.25 GHz for left-hand circular polarization (LHCP), respectively.