Detecting the first generation of stars, Population III (PopIII), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for PopIII galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ~500 arcmin$^{2}$ across JWST legacy fields for PopIII candidates, including GLIMPSE which, assisted by gravitational lensing, has produced JWST's deepest NIRCam imaging thus far. We discover one promising PopIII galaxy candidate (GLIMPSE-16043) at $z=6.50^{+0.03}_{-0.24}$, a moderately lensed galaxy (mu=2.9) with an intrinsic UV magnitude of $M_{UV}$=-15.89. It exhibits key PopIII features: strong H$\alpha$ emission (rest-frame EW $2810\pm550$\AA); a Balmer jump; no dust (UV slope $\beta=-2.34\pm0.36$); and undetectable metal lines (e.g., [OIII]; [OIII]/H$\beta$<0.44) implying a gas-phase metallicity of Zgas/Zsun<0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5Myr) with a stellar mass of $\simeq10^{5}M_{\odot}$. Intriguingly, this source deviates significantly from the extrapolated UV-metallicity relation derived from recent JWST observations at $z=4-10$, consistent with UV enhancement by a top-heavy PopIII initial mass function or the presence of an extremely metal-poor AGN. We also derive the first observational constraints on the PopIII UV luminosity function at z~6-7. The volume density of GLIMPSE-16043 ($\approx10^{-4}$ cMpc$^{-3}$) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way's most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before.
The intensity of the Cosmic UV background (UVB), coming from all sources of ionising photons such as star-forming galaxies and quasars, determines the thermal evolution and ionization state of the intergalactic medium (IGM) and is, therefore, a critical ingredient for models of cosmic structure formation. Most of the previous estimates are based on the comparison between observed and simulated Lyman-$\alpha$ forest. We present the results of an independent method to constrain the product of the UVB photoionisation rate and the covering fraction of Lyman limit systems (LLSs) by searching for the fluorescent Lyman-$\alpha$ emission produced by self-shielded clouds. Because the expected surface brightness is well below current sensitivity limits for direct imaging, we developed a new method based on three-dimensional stacking of the IGM around Lyman-$\alpha$ emitting galaxies (LAEs) between 2.9 3 that are consistent with previous measurements, with a preference for relatively low UVB intensities at z=3, and which suggest a non-monotonic decrease of $\Gamma$HI with increasing redshift between 3
We investigate correlations between different physical properties of star-forming galaxies in the 'Evolution and Assembly of GaLaxies and their Environments' (EAGLE) cosmological hydrodynamical simulation suite over the redshift range 0 ≤ z ≤ 4.5. A principal component analysis reveals that neutral gas fraction (fgas,neutral), stellar mass (Mstellar) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of fgas, neutral–Mstellar–SFR with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their fgas, neutral and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from fgas, neutral, or from the Mstellar and SFR. We argue that the appearance of this 'Fundamental Plane of star formation' is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range 0 ≲ z ≲ 3, and find that such a plane is also present in the data. The properties of the observed Fundamental Plane of star formation are in good agreement with EAGLE's predictions.
We use the hydrodynamical EAGLE simulation to study the magnitude and origin of the scatter in the stellar mass - halo mass relation for central galaxies. We separate cause and effect by correlating stellar masses in the baryonic simulation with halo properties in a matched dark matter only (DMO) simulation. The scatter in stellar mass increases with redshift and decreases with halo mass. At $z = 0.1$ it declines from 0.25 dex at $M_{200, \rm DMO} \approx 10^{11}$ M$_{\odot}$ to 0.12 dex at $M_{200, \rm DMO} \approx 10^{13}$ M$_{\odot}$, but the trend is weak above $10^{12}$ M$_{\odot}$. For $M_{200, \rm DMO} < 10^{12.5}$ M$_{\odot}$ up to 0.04 dex of the scatter is due to scatter in the halo concentration. At fixed halo mass, a larger stellar mass corresponds to a more concentrated halo. This is likely because higher concentrations imply earlier formation times and hence more time for accretion and star formation, and/or because feedback is less efficient in haloes with higher binding energies. The maximum circular velocity, $V_{\rm max, DMO}$, and binding energy are therefore more fundamental properties than halo mass, meaning that they are more accurate predictors of stellar mass, and we provide fitting formulae for their relations with stellar mass. However, concentration alone cannot explain the total scatter in the $M_{\rm star} - M_{200, \rm DMO}$ relation, and it does not explain the scatter in $M_{\rm star} -V_{\rm max, DMO}$. Halo spin, sphericity, triaxiality, substructure and environment are also not responsible for the remaining scatter, which thus could be due to more complex halo properties or non-linear/stochastic baryonic effects.
Context. In recent years, a number of Lyman continuum (LyC) leaker candidates have been found at intermediate redshifts, providing insight into how the Universe was reionised at early cosmic times. There are now around 100 known LyC leakers at all redshifts, which enables us to analyse their properties statistically. Aims. Here, we identify new LyC leaker candidates at z ≈ 3 − 4.5 and compare them to objects from the literature to get an overview of the different observed escape fractions and their relation to the properties of the Lyman α (Ly α ) emission line. The aim of this work is to test the indicators (or proxies) for LyC leakage suggested in the literature and to improve our understanding of the kinds of galaxies from which LyC radiation can escape. Methods. We used data from the Hubble Deep Ultraviolet (HDUV) legacy survey to search for LyC emission based on a sample of ≈2000 Ly α emitters (LAEs) detected previously in two surveys with the Multi-Unit Spectroscopic Explorer (MUSE), namely MUSE-Deep and MUSE-Wide. Based on the redshifts and positions of the LAEs, we look for potential LyC leakage in the WFC3/UVIS F 336 W band of the HDUV survey. The escape fractions are measured and compared in different ways, including spectral energy distribution (SED) fitting performed using the CIGALE software. Results. We add 12 objects to the sample of known LyC leaker candidates (5 highly likely leakers and 7 potential ones), 1 of which was previously known, and compare their Ly α properties to their escape fractions. We find escape fractions of between ∼20% and ∼90%, assuming a high transmission in the intergalactic medium (IGM). We present a method whereby the number of LyC leaker candidates we find is used to infer the underlying average escape fraction of galaxies, which is ≈12%. Conclusion. Based on their Ly α properties, we conclude that LyC leakers are not very different from other high- z LAEs and suggest that most LAEs could be leaking LyC even if this cannot always be detected because of the direction of emission and the transmission properties of the IGM.
We report the discovery of diffuse extended Ly-alpha emission from redshift 3.1 to 4.5, tracing cosmic web filaments on scales of 2.5-4 comoving Mpc. These structures have been observed in overdensities of Ly-alpha emitters in the MUSE Extremely Deep Field, a 140 hour deep MUSE observation located in the Hubble Ultra Deep Field. Among the 22 overdense regions identified, 5 are likely to harbor very extended Ly-alpha emission at high significance with an average surface brightness of $\mathrm{5 \times 10^{-20} erg s^{-1} cm^{-2} arcsec^{-2}}$. Remarkably, 70% of the total Ly-alpha luminosity from these filaments comes from beyond the circumgalactic medium of any identified Ly-alpha emitters. Fluorescent Ly-alpha emission powered by the cosmic UV background can only account for less than 34% of this emission at z$\approx$3 and for not more than 10% at higher redshift. We find that the bulk of this diffuse emission can be reproduced by the unresolved Ly-alpha emission of a large population of ultra low luminosity Ly-alpha emitters ($\mathrm{<10^{40} erg s^{-1}}$), provided that the faint end of the Ly-alpha luminosity function is steep ($α\lessapprox -1.8$), it extends down to luminosities lower than $\mathrm{10^{38} - 10^{37} erg s^{-1}}$ and the clustering of these Ly-alpha emitters is significant (filling factor $< 1/6$). If these Ly-alpha emitters are powered by star formation, then this implies their luminosity function needs to extend down to star formation rates $\mathrm{< 10^{-4} M_\odot yr^{-1}}$. These observations provide the first detection of the cosmic web in Ly-alpha emission in typical filamentary environments and the first observational clue for the existence of a large population of ultra low luminosity Ly-alpha emitters at high redshift.
We present the first constraints on the prevalence of z>10 galaxies in the Hubble Ultra Deep Field (HUDF) leveraging new NIRCam observations from JEMS (JWST Extragalactic Medium-band Survey). These NIRCam observations probe redward of 1.6$μ$m, beyond the wavelength limit of HST, allowing us to search for galaxies to z>10. These observations indicate that the highest redshift candidate identified in the HUDF09 data with HST, UDFj-39546284, has a redshift of z>11.5, as had been suggested in analyses of the HUDF12/XDF data. This has now been confirmed with JWST NIRSpec. This source is thus the most distant galaxy discovered by HST in its >30 years of operation. Additionally, we identify nine other z~8-13 candidate galaxies over the HUDF, two of which are new discoveries that appear to lie at z~11-12. We use these results to characterize the evolution of the UV luminosity function (LF) from z~15 to z~8.7. While our LF results at z~8.7 and z~10.5 are consistent with previous findings over the HUDF, our new LF estimates at z~12.6 are higher than other results in the literature, potentially pointing to a milder evolution in the UV luminosity density from z~12.6. We emphasize that our LF results are uncertain given the small number of z~12.6 sources and limited volume probed. The new NIRCam data also indicate that the faint z~8-13 galaxies in the HUDF/XDF show blue UV-continuum slopes beta~-2.7, high specific star formation rates ~24.5 Gyr**-1, and high EW (~1300A) [OIII]+H$β$ emission, with two z~8.5 sources showing [OIII]+H$β$ EWs of ~2300 A.