This review focuses on polymer field-effect transistor (PFET) based gas sensor with polymer as the sensing layer, which interacts with gas analyte and thus induces the change of source-drain current (ΔISD). Dependent on the sensing layer which can be semiconducting polymer, dielectric layer or conducting polymer gate, the PFET sensors can be subdivided into three types. For each type of sensor, we present the molecular structure of sensing polymer, the gas analyte and the sensing performance. Most importantly, we summarize various analyte-polymer interactions, which help to understand the sensing mechanism in the PFET sensors and can provide possible approaches for the sensor fabrication in the future.
We have designed an intensity-demodulated sensing system based on Fabry-Perot interferometric sensor for pressure measurement. The structure of the sensing probe has been presented. The sensing system is interrogated by broadband source. For compensating drift of the source power and fluctuation in fiber attenuation, the light beam is separated into two channels by a fiber Bragg Grating, the transmitted light used as reference signal and the reflected light used as sensing signal. In order to improve the signal-to-noise ratio(SNR) of the detection system, the input light is modulated by pulse signal, and the low noise preamplifier is given. The more important factor to improve the SNR is that a synchronization integrator is employed to construct a narrow band filter to restrain noises and disturbances. It has better performance with a narrow band noise filter rather than the general RC active bandpass filter. The sensing signal and the reference signal are transformed into DC voltage signal from AC voltage signal after they passed the synchronization integrator circuit. Subsequently the division operation of the sensing signal and the reference signal is implemented. At last a linear output model is established. The system has advantages of fast response, strong ability and low cost. The dynamic range of the sensor is from 0 to 400KPa, and the resolution reaches to 200Pa.
Augmented reality (AR) technology has been applied to the industrial field; however, at present, most industrial AR applications are developed for specific application scenarios, which are difficult to develop and have a long development cycle, and lack universality. To this end, this paper proposed a quick development toolkit for augmented reality visualization (QDARV) of a factory by using the script configuration and parsing approach. With QDARV, designers can quickly develop industrial AR applications, achieve AR registration based on quick response (QR) code and simultaneous localization and mapping (SLAM), and superpose information such as disassembly animations, industrial instruments, pictures, and texts on real scenes. In QDARV, an AR registration method based on SLAM map reloading is proposed. Through saving and reloading the map and the configuration and analysis of the SLAM-AR display content script, the AR scene configured by the designer is displayed. Meanwhile, the objects detected using YOLOv5 are used as a landmark to assist the SLAM system in positioning. The QDARV can be applied to realize AR visualization of factories with a large area.
In this contribution, a new surface acoustic wave (SAW)-based sensor was proposed for sensing hydrogen sulfide (H2S) at room temperature (30 °C), which was composed of a phase discrimination circuit, a SAW-sensing device patterned with delay line, and a triethanolamine (TEA) coating along the SAW propagation path of the sensing device. The TEA was chosen as the sensitive interface for H2S sensing, owing to the high adsorption efficiency by van der Waals’ interactions and hydrogen bonds with H2S molecules at room temperature. The adsorption in TEA towards H2S modulates the SAW propagation, and the change in the corresponding phase was converted into voltage signal proportional to H2S concentration was collected as the sensor signal. A SAW delay line patterned on Y-cut quartz substrate with Al metallization was developed photographically, and lower insertion and excellent temperature stability were achieved thanks to the single-phase unidirectional transducers (SPUDTs) and lower cross-sensitivity of the piezoelectric substrate. The synthesized TEA by the reaction of ethylene oxide and ammonia was dropped into the SAW propagation path of the developed SAW device to build the H2S sensor. The developed SAW sensor was characterized by being collecting into the phase discrimination circuit. The gas experimental results appear that fast response (7 s at 4 ppm H2S), high sensitivity (0.152 mV/ppm) and lower detection limit (0.15 ppm) were achieved at room temperature. It means the proposed SAW sensor will be promising for H2S sensing.
This paper explores the use of sodium alginate, polyvinyl alcohol and polyethylene glycol. Chemical cross-linking creates a high-toughness support structure, forming a corrosion-resistant, high-toughness and electromagnetic shielding hydrogel.
Abstract Mustard gas, a representative of blister agents, poses a severe threat to human health. Although the structure of 2-chloroethyl ethyl sulfide (2-CEES) is similar to mustard gas, 2-CEES is non-toxic, rendering it a commonly employed simulant in related research. ZnFe 2 O 4 -based semiconductor gas sensors exhibit numerous advantages, including structural stability, high sensitivities, and easy miniaturization. However, they exhibit insufficient sensitivity at low concentrations and require high operating temperatures. Owing to the effect of electronic and chemical sensitization, the gas-sensing performance of a sensor may be remarkably enhanced via the sensitization method of noble metal loading. In this study, based on the morphologies of ZnFe 2 O 4 hollow microspheres, a solvothermal method was adopted to realize different levels of Au loading. Toward 1 ppm of 2-CEES, the gas sensor based on 2 wt.% Au-loaded ZnFe 2 O 4 hollow microspheres exhibited a response sensitivity twice that of the gas sensor based on pure ZnFe 2 O 4 ; furthermore, the response/recovery times decreased. Additionally, the sensor displayed excellent linear response to low concentrations of 2-CEES, outstanding selectivity in the presence of several common volatile organic compounds, and good repeatability, as well as long-term stability. The Au-loaded ZnFe 2 O 4 -based sensor has considerable potential for use in detecting toxic chemical agents and their simulants. Graphical abstract