Polyphosphazenes (PPZs) are hybrid polymers comprising a main chain containing nitrogen and phosphorous linked through interchanging single and double bonds, and side chains.
Background: Structural similarity in Chalcone and Pyrazoline brought our intention for the analysis of such compounds. This study involved the synthesis of chalcones and their pyrazoline derivatives and their screening as cholinesterase inhibitors. The newly synthesized compounds were also investigated for their antioxidant potential. </P><P> Methods: Chalcones were synthesized by well-established methods of synthesis and their structural elucidation was carried out by H-NMR, 13C-NMR, Mass spectrometry and FTIR. For the determination of inhibition potency of synthesized compounds, spectrophotometric method was applied whereas, DPPH free radical scavenging method was used to check the antioxidant ability. </P><P> Results: Chalcones and their pyrazoline derivatives were synthesized and characterised by 1HNMR, 13C-NMR, Mass spectrometry and FTIR. The compounds were screened for their anti- Alzheimer activity, which exhibited that compounds 1g, 1c and 1h, 1g showed strong inhibitory potency against acetylcholinesterase and butyrylcholinesterase, respectively. DPPH radical scavenging method was applied to check anti-oxidant potential of synthesized compounds and results explored that among all the synthesized compounds only compounds 1c and 1b showed strong scavenging potential. </P><P> Conclusion: Chalcone and their pyrazoline derivatives were synthesized and screened for their anti-Alzheimer and antioxidant potential. The experimental results of anti-Alzheimer activity were compared with molecular docking studies, which showed that compounds 1g, 1c and 1h, 1g were active against AChE and BChE, respectively. Among the synthesized compounds 1c and 1b were found to be most potent antioxidants. These results suggest that compound 1b, 1c, 1g and 1h may further be explored for further developments.
Ferrocene‐based derivatives show potential application as burning rate catalysts (BRCs) for solid composite propellants. However, migration problems of simple ferrocene‐based derivatives limit their application as BRCs in solid composite propellants. To overcome the migration problems of ferrocene‐based BRCs and to enhance the burning rate of ammonium perchlorate (AP)‐based propellants, zero‐ to second‐generation tris(2‐aminoethyl)amine‐based ferrocene‐terminated dendrimers (G0, G1 and G2) were synthesized. The structures of G0, G1 and G2 were confirmed using 1 H NMR, Fourier transform infrared and UV–visible spectroscopies. The electrochemical behavior of G0, G1 and G2 was investigated using cyclic voltammetry. It was found that G0, G1 and G2 showed redox behavior due to the presence of ferrocene and this redox behavior was diffusion controlled over the investigated scan range. The burning rate catalytic effect of G0, G1 and G2 on thermal decomposition of AP was investigated using thermogravimetry and differential thermogravimetry. G0, G1 and G2 showed good catalytic effect on the thermal decomposition of AP. Anti‐migration studies showed that migration of G0, G1 and G2 was much slower than that of 2,2‐bis(ethylferrocenyl)propane (catocene) and ferrocene.
Ethylene polymerization catalyzed by Ni and Pd catalysts is an area of great interest both in academic research and for industrial production. The structures of Ni and Pd catalysts can dramatically influence polymerization performance. In this review, the influence of newly reported Ni and Pd catalysts on ethylene polymerization, from ligand effects to metal–metal cooperativity, as well as the polymerization conditions, are discussed to provide fresh guidelines for rational design of high‐performances catalysts, highly efficient study of polymerization mechanisms, and successful synthesis of PE variants with unique microstructures and properties.