Keratin-associated proteins (KAPs) are key constituents of wool and hair fibers. In this study, an ovine KAP gene encoding a HGT-KAP protein was identified. The gene was different from all of the HGT-KAP genes identified in sheep, but was closely related to the human KAP21-1 gene, suggesting that it represented the unidentified ovine KRTAP21-1. Four variants (named A to D) of ovine KRTAP21-1 were found in 360 Merino × Southdown-cross lambs from four sire lines. Three sequence variations were detected among these variants. Two of the sequence variations were located upstream of the coding region and the remaining one was a synonymous variation in the coding sequence. Six genotypes were found in the Merino-cross lambs, with only two of the genotypes (AA and AC) occurring at a frequency of over 5%. Wool from sheep of genotype AA had a higher yield than that from AC sheep (p = 0.014), but tended to have a lower greasy fleece weight (GFW) than that of genotype AC (P = 0.078). This suggests that variation in KRTAP21-1 affects wool yield and the gene may have potential for use as a genetic maker for improving wool yield.
In order to implement the strategy of transforming the core of national postgraduate education from the cultivation of academic talents into cultivation of both academic and applied talents, it is necessary to reform personnel training programs and innovate personnel training models.Taking the cultivation of professional degree master in agriculture in Hunan University of Humanities, Science and Technology as an example, based on the needs of enterprises in the modern agriculture industry, this paper proposes the new mode of universities, enterprises, industries, and local governments jointly cultivating high-level applied professionals in the agricultural field, including the establishment of training goals, the formulation and optimization of training programs, the establishment of joint training bases, and the construction of quality monitoring systems inside and outside campus.Practice has shown that: postgraduate students in agriculture through jointly trained by multiple units can well combine the education and teaching, scientific research and agricultural production, which has significantly improved the application and practical ability of theoretical knowledge of postgraduate students.
Circular RNA (circRNA) is a type of non-coding RNA generated from back-splicing the reactions of linear RNA. It plays an important role in various cellular and biological processes. However, there are few studies about the regulatory effect of circRNAs on cashmere fiber traits in cashmere goats. In this study, the expression profiles of circRNAs in skin tissue were compared between Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats, with a significant difference in cashmere fiber yield, cashmere fiber diameter, and cashmere fiber color, using RNA-seq. A total of 11,613 circRNAs were expressed in the caprine skin tissue, and their type, chromosomal distribution, and length distribution were characterized. A total of 115 up-regulated circRNAs and 146 down-regulated circRNAs in LC goats were screened compared to ZB goats. The authenticity of 10 differentially expressed circRNAs was validated by detecting their expression levels and the head-to-tail splice junction using RT-PCR and DNA sequencing, respectively. The parent genes of differentially expressed circRNA were mainly enriched in some Gene Ontology (GO) terms and pathways related to cashmere fiber traits, such as the canonical Wnt signaling pathway, which is involved in the regulation of cell promotion, stem cell proliferation, Wnt signaling pathway regulation, epithelial morphogenesis, MAPK signaling pathway, and cell adhesion molecules pathway. Eight differentially expressed circRNAs were further selected to construct a circRNA-miRNA network, and some miRNAs that were previously reported as related to fiber traits were found in the network. This study provides a deep understanding of the roles of circRNAs in the regulation of cashmere fiber traits in cashmere goats and the involvement of differential splicing in phenotypic expression according to breed and region.
BACKGROUND A deficiency of maternal thyroid hormones (THs) during pregnancy has severe impacts on fetal brain development. Neural stem cells (NSCs) are major targets of THs and provided a powerful model to explore the underlying mechanism of THs during brain development. Although miRNA-125 might be associated with the NSCs differentiation, the relationship between miR-125 and hypothyroidism (HypoT) development remains unclear. MATERIAL AND METHODS In our study, we screened a differentially expressed gene miR-125b-5p from brain between euthyroid (EuT) and HypoT rats. In vitro, we employed anion exchange resin to remove THs to stimulate HypoT. QRT-PCR and Western blot were used to examine the expression of signal transducer and activator of transcription 3 (Stat3). The relationship between miR-125b-5p and Stat3 was detected via a dual-luciferase assay. RESULTS QRT-PCR results showed that the level of miR-125b-5p in HypoT rat brains was significantly suppressed, suggesting some relationship between miR-125b-5p and HypoT. In C17.2, miR-125b-5p promoted cell differentiation into neurons by regulating the expression of tubulin beta chain 3 (TUBB3) and glial fibrillary acid protein (GFAP). QRT-PCR and Western blot results revealed that miR-125b-5p mimic modulated the contents of total Stat3 and p-Stat3. A dual-luciferase assay showed that miR-125b-5p negatively regulated the expression of Stat3 by binding with the first site in 3' UTR of Stat3. CONCLUSIONS These results revealed Stat3 is a new target of miR-125b-5p and revealed the mechanism of miR-125b-5p suppressing HypoT development. These findings provide a new target for HypoT therapy.
Objective To observe effects of glycyrrhizin and oleanolic acid on renal histopathological changes induced by subchronic cadmium exposure in rats.Methods Renal glomemli,proximal tubular histopathological changes in CdCl\-2 -treated?CdCl\-2-GL,CdCl\-2-OA-cotreated rats were observed with light-microscopy and electro-microscopy.Results Renal glomeruli congestion,swelling and fibrosis, proximal tubular lining cells swelling in CdCl\-2-treated rats were significantly ameliorated by GL,OA cotreatments,which were revealed by light microscopy. Ultrastructure examination showed the pathologic changes in constituents of glomeruli and subcellular constituents like mitochondria in proximal tubular cells were less severe in GL,OA cotreated rats than those in CdCl\-2-treated rats.Conclusion GL and OA could improve the renal histophathological changes induced by cadmium in a subchronic model in rats.
Objective To investigate the blood glucose reduction effect of ethanol extracts from Momordica charantia in animals. Methods Type 2 diabetic animal model was established by feeding mice with high-fat diet for one month. The mice with blood glucose above 8 mmol/L were selected and assigned to control group and two dose groups with ethanol extracts from Momordica charantia at doses of 0.125g/kg·bw and 0.500g/kg·bw dose. Then 30 days later,the contents of fasting blood glucose,glucose tolerance,biochemistry and serum malondialdehyde (MDA),superoxide dismutase (SOD) were detected. Normal mice were administered with ethanol extracts from Momordica charantia at dose of 0.500g/kg·bw to observe its effect on blood glucose. Results Compared with hyperglycemic mice in control group,ethanol extracts from Momordica charantia at dose of 0.500g/kg·bw could significantly reduce levels of fasting blood glucose and raise blood glucose reduction (P 0.05) and improve the glucose tolerance of hyperglycemic mice. Ethanol extracts from Momordica charantia at both doses could significantly reduce the level of serum glutamic pyruvic transaminase at dose of 0.125g/kg·bw ,and reduce the levels of serum albumin and urea nitrogen(P0.01). It did not significantly affect the levels of serum MDA, SOD or other biochemistry of hyperglycemic mice,nor on blood glucose of normal mice. Conclusions Ethanol extracts from Momordica charantia can reduce the level of blood glucose and improve the glucose tolerance in type 2 diabetic model mice,but it might reduce the level of serum albumin.
Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.
Abstract Aim The meat of Tibetan sheep has a unique flavor, delicious taste, and superior nutritional value. However, the change of grass will lead to a change in meat quality. This study aimed to explore the potential regulatory mechanisms of microbial metabolites with respect to meat quality traits of Tibetan sheep under nutrient stress in the cold season. Methods and results We determined and analyzed the longissimus dorsi quality, fatty acid composition, expression of genes, and rumen microbial metabolites of Tibetan sheep in cold and warm seasons. The shear force was decreased (P < .05), the meat color a*24 h value was increased (P < .05), and the contents of crude fat (EE) and protein (CP) were decreased in the cold season. Polyunsaturated fatty acids (PUFAs)-linoleic acid and docosahexaenoic acid increased significantly in the cold season (P < .05). The expressions of meat quality genes MC4R, CAPN1, H-FABP, and LPL were significantly higher in the warm season (P < .05), and the CAST gene was significantly expressed in the cold season (P < .01). The different microbial metabolites of Tibetan sheep in the cold and warm seasons were mainly involved in amino acid metabolism, lipid metabolism, and digestive system pathway, and there was some correlation between microbiota and meat quality traits. There are similarities between microbial metabolites enriched in the lipid metabolism pathway and muscle metabolites. Conclusion Under nutritional stress in the cold season, the muscle tenderness of Tibetan sheep was improved, and the fat deposition capacity was weakened, but the levels of beneficial fatty acids were higher than those in the warm season, which was more conducive to healthy eating.