Abstract Populations of lake sturgeon Acipenser fulvescens have undergone dramatic declines in abundance and distribution in the Great Lakes basin and are a species of conservation concern throughout their range. While information regarding the genetic population structure of this species is critical for the development of effective management plans, little information currently exists. We examined both microsatellite and mitochondrial DNA (mtDNA) variation as a means of estimating population genetic diversity within, and the degree of spatial population structuring among, 11 remnant lake sturgeon populations in the upper Great Lakes basin. Multiple measures of genetic diversity were consistently high across populations and were not significantly correlated with estimates of current adult population size. Despite substantial population declines, life history characteristics, including longevity and iteroparity, appear to have buffered lake sturgeon populations from losses of genetic diversity. Significant levels of interpopulation variance in both microsatellite allele and mtDNA haplotype frequencies (mean genetic differentiation index = 0.055 over eight microsatellite loci; mean haplotype frequencies = 0.134 for mtDNA) were detected. Population structure is most likely a function of high levels of natal fidelity, a trend observed in other species of sturgeon Acipenser spp. We discuss the implications of these results with regard to the management and conservation of lake sturgeon in the Great Lakes.
Abstract We used microsatellite markers, mitochondrial DNA (mtDNA), and satellite telemetry to infer the North American geographic origin and racial composition of Canada Geese (Branta canadensis) from newly colonized habitats in Greenland. Using likelihood-based assignment tests we determined that multilocus genotypes of Greenland Canada Geese were consistent with the hypothesis of origin from birds of the Atlantic Population breeding around southern Ungava Bay, Quebec, Canada. The Atlantic Population, based on previous studies of seasonal movements and demography, appeared to be reproductively isolated from the North Atlantic Population. We found that these two populations were genetically differentiated based on microsatellite allele and mtDNA haplotype frequencies. Findings of high levels of genetic discordance among North American breeding populations are consistent with migratory movements, despite high levels of distributional overlap of birds from the North Atlantic and Atlantic Populations during migration and on wintering areas. Findings based on genetic markers were concordant with satellite telemetry conducted during spring migration, which showed that birds destined for Greenland migrate through the southern Ungava Bay breeding colony. Genetic differences among these populations are useful for addressing other issues of ecological or management concern. Identificación de la Población Fuente de los Gansos Branta canadensis de Groenlandia: Evaluación Genética de una Colonización Reciente Resumen. Utilizamos marcadores microsatélites, ADN mitocondrial (ADNmt), y telemetría de satélite para inferir el origen geográfico en Norte América y la composición racial de los gansos Branta canadensis en hábitats recientemente colonizados en Groenlandia. Mediante pruebas de asignación basadas en verosimilitud, determinamos que los genotipos multilocus de los gansos de Groenlandia eran consistentes con la hipótesis de origen de aves de la población del Atlántico que se reproduce alrededor del sur de Ungava Bay, Quebec, Canadá. Con base en estudios previos de movimientos estacionales y demografía, la población del Atlántico pareció estar aislada reproductivamente de la población del Atlántico Norte. Encontramos que estas dos poblaciones son genéticamente diferentes en términos de frecuencias alélicas de microsatélites y haplotipos de ADNmt. El hallazgo de altos niveles de discordancia genética entre poblaciones reproductivas norteamericanas es consistente con los movimientos migratorios, a pesar de los altos niveles de superposición de las distribuciones de aves de las poblaciones del Atlántico y el Atlántico Norte durante la migración y en las áreas de invernada. Los resultados basados en los marcadores genéticos concordaron con la telemetría satelital llevada a cabo durante la migración de primavera, la cual mostró que las aves con destino a Groenlandia migran a través del sur de la colonia reproductiva de Ungava Bay. Las diferencias genéticas entre estas poblaciones son útiles para abordar otros asuntos de interés ecológico o de manejo.
We used microsatellite markers, mitochondrial DNA (mtDNA), and satellite telemetry to infer the North American geographic origin and racial composition of Canada Geese (Branta canadensis) from newly colonized habitats in Greenland. Using likelihood-based assignment tests we determined that multilocus genotypes of Greenland Canada Geese were consistent with the hypothesis of origin from birds of the Atlantic Population breeding around southern Ungava Bay, Quebec, Canada. The Atlantic Population, based on previous studies of seasonal movements and demography, appeared to be reproductively isolated from the North Atlantic Population. We found that these two populations were genetically differentiated based on microsatellite allele and mtDNA haplotype frequencies. Findings of high levels of genetic discordance among North American breeding populations are consistent with migratory movements, despite high levels of distributional overlap of birds from the North Atlantic and Atlantic Populations during migration and on wintering areas. Findings based on genetic markers were concordant with satellite telemetry conducted during spring migration, which showed that birds destined for Greenland migrate through the southern Ungava Bay breeding colony. Genetic differences among these populations are useful for addressing other issues of ecological or management concern.
Abstract Background A dual olfactory system, represented by two anatomically distinct but spatially proximate chemosensory epithelia that project to separate areas of the forebrain, is known in several classes of tetrapods. Lungfish are the earliest evolving vertebrates known to have this dual system, comprising a main olfactory and a vomeronasal system (VNO). Lampreys, a group of jawless vertebrates, have a single nasal capsule containing two anatomically distinct epithelia, the main (MOE) and the accessory olfactory epithelia (AOE). We speculated that lamprey AOE projects to specific telencephalic regions as a precursor to the tetrapod vomeronasal system. Results To test this hypothesis, we characterized the neural circuits and molecular profiles of the accessory olfactory epithelium in the sea lamprey ( Petromyzon marinus ). Neural tract-tracing revealed direct and reciprocal connections with the dorsomedial telencephalic neuropil (DTN) which in turn projects directly to the dorsal pallium and the rostral hypothalamus. High-throughput sequencing demonstrated that the main and the accessory olfactory epithelia have virtually identical profiles of expressed genes. Real time quantitative PCR confirmed expression of representatives of all 3 chemoreceptor gene families identified in the sea lamprey genome. Conclusion Anatomical and molecular evidence shows that the sea lamprey has a primordial accessory olfactory system that may serve a chemosensory function.
The purpose of this study was to document patterns of reproductive skew among male spotted hyenas (Crocuta crocuta), a species in which many normal mammalian sex roles are reversed. We used paternity determined from 12 microsatellite markers together with demographic and behavioral data collected over 10 years from a free-living population to document relationships among reproductive success (RS), social rank, and dispersal status of male hyenas. Our data suggest that dispersal status and length of residence are the strongest determinants of RS. Natal males comprise over 20% of the adult male population, yet they sire only 3% of cubs, whereas immigrants sire 97%. This reproductive advantage to immigrants accrues despite the fact that immigrants are socially subordinate to all adult natal males, and it provides a compelling ultimate explanation for primary dispersal in this species. High-ranking immigrants do not monopolize reproduction, and tenure accounts for more of the variance in male reproductive success than does social rank. Immigrant male hyenas rarely fight among themselves, so combat between rivals may be a relatively ineffectual mode of sexual selection in this species. Instead, female choice of mates appears to play an important role in determining patterns of paternity in Crocuta. Our data support a " limited control" model of reproductive skew in this species, in which female choice may play a more important role in limiting control by dominant males than do power struggles among males.
Abstract We describe the cloning and characterization of seven microsatellite loci from [CA]‐ and [GA]‐enriched partial genomic libraries of Blanding's turtle, Emydoidea blandingii , and their use in two other species of freshwater turtle, Chrysemys picta and Chelydra serpentina . These loci will be used in a long‐term ecological study of the reproductive success of these co‐occurring freshwater turtle species.