The DsTau project proposes to study tau-neutrino production in high-energy proton interactions. The outcome of this experiment are prerequisite for measuring the $\nu_\tau$ charged-current cross section that has never been well measured. Precisely measuring the cross section would enable testing of lepton universality in $\nu_\tau$ scattering and it also has practical implications for neutrino oscillation experiments and high-energy astrophysical $\nu_\tau$ observations. $D_s$ mesons, the source of tau neutrinos, following high-energy proton interactions will be studied by a novel approach to detect the double-kink topology of the decays $D_s \rightarrow \tau\nu_\tau$ and $\tau\rightarrow\nu_\tau X$. Directly measuring $D_s\rightarrow \tau$ decays will provide an inclusive measurement of the $D_s$ production rate and decay branching ratio to $\tau$. The momentum reconstruction of $D_s$ will be performed by combining topological variables. This project aims to detect 1,000 $D_s \rightarrow \tau$ decays in $2.3 \times 10^8$ proton interactions in tungsten target to study the differential production cross section of $D_s$ mesons. To achieve this, state-of-the-art emulsion detectors with a nanometric-precision readout will be used. The data generated by this project will enable the $\nu_\tau$ cross section from DONUT to be re-evaluated, and this should significantly reduce the total systematic uncertainty. Furthermore, these results will provide essential data for future $\nu_\tau$ experiments such as the $\nu_\tau$ program in the SHiP project at CERN. In addition, the analysis of $2.3 \times 10^8$ proton interactions, combined with the expected high yield of $10^5$ charmed decays as by-products, will enable the extraction of additional physical quantities.
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage.
DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals.
A bstract The OPERA experiment has discovered the tau neutrino appearance in the CNGS muon neutrino beam, in agreement with the 3 neutrino flavour oscillation hypothesis. The OPERA neutrino interaction target, made of Emulsion Cloud Chambers, was particularly efficient in the reconstruction of electromagnetic showers. Moreover, thanks to the very high granularity of the emulsion films, showers induced by electrons can be distinguished from those induced by π 0 s, thus allowing the detection of charged current interactions of electron neutrinos. In this paper the results of the search for electron neutrino events using the full dataset are reported. An improved method for the electron neutrino energy estimation is exploited. Data are compatible with the 3 neutrino flavour mixing model expectations and are used to set limits on the oscillation parameters of the 3+1 neutrino mixing model, in which an additional mass eigenstate m 4 is introduced. At high Δ m 41 2 (≳0.1 eV 2 ), an upper limit on sin 2 2 θ μe is set to 0.021 at 90% C.L. and Δ m 41 2 ≳ 4 × 10 − 3 eV 2 is excluded for maximal mixing in appearance mode.
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m 3 . The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
OPERA is a long-baseline experiment designed to search for $\nu_{\mu}\to\nu_{\tau}$ oscillations in appearance mode. It was based at the INFN Gran Sasso laboratory (LNGS) and took data from 2008 to 2012 with the CNGS neutrino beam from CERN. After the discovery of $\nu_\tau$ appearance in 2015, with $5.1\sigma$ significance, the criteria to select $\nu_\tau$ candidates have been extended and a multivariate approach has been used for events identification. In this way the statistical uncertainty in the measurement of the oscillation parameters and of $\nu_\tau$ properties has been improved. Results are reported.