logo
    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
    A. Abed AbudB. AbiR. AcciarriM. A. AceroG. AdamovD. L. AdamsM. AdinolfiA. AduszkiewiczZahid AhmadJ. AhmedT. AlionS. Alonso MonsalveM. AlrashedC. AltA. AltonP. AmedoJ. AndersonC. AndreopoulosM. P. AndrewsF. AndrianalaS. AndringaН. АнфимовA. AnkowskiM. AntonovaStefan AntuschAlfredo ArandaA. ArigaL. O. ArnoldM. A. ArroyaveJ. AsaadiA. AurisanoV. AushevD. AutieroM. Ayala-TorresF. AzfarH. BackJ. J. BackChris BackhouseP. BaessoI. BagaturiaL. BagbyS. BalasubramanianP. BaldiB. BallerB. BambahF. BarãoGabriela BarenboimG. J. BarkerW. BarkhouseC. BarnesG. BarrJ. Barranco MonarcaN. BarrosJ. BarrowA. Basharina-FreshvilleA. BashyalV. BasqueE. BelchiorJames BattatF. BattistiF. BayJ. L. Bazo AlbaJ. F. BeacomE. BechetoilleB. BeheraL. BellantoniG. BellettiniVincenzo BelliniO. BeltramelloD. BelverN. BenekosF. NevesS. BerkmanP. BernardiniR. M. BernerH. BernsS. BertolucciM. BetancourtA. Betancur RodríguezM. BhattacharjeeS. BhullerB. BhuyanS. BiagiJ. BianM. BiassoniK. BieryB. BilkiM. BishaiA. BitadzeA. BlakeF. d. M. BlaszczykG. BlazeyE. BlucherJ. G. BoissevainS. BolognesiT. BoltonL. BombenM. BonesiniM. BongrandF. BoniniA. BoothC.N. BoothS. BordoniA. BorkumT. BoschiN. BostanP. BourC. BourgeoisS. B. BoydD. BoydenJ. BracinikD. BragaD. BrailsfordA. BrandtJ. BremerC. BrewE. BrianneS. J. BriceC. BrizzolariC. BrombergG. BrooijmansJ. J. BrookeA. BrossG. BrunettiG. BrunettiN. BuchananH. S. BuddD. CaiuloP. CalafiuraJ. CalcuttM. CălinS. CalvezE. CalvoA. CaminataM. CampanelliK. CankocakD. CaratelliG. CariniB. CarlusP. CarnitiI. TerrazasH. CarranzaTimothy J. CarrollJ. F. Castaño ForeroA. CastilloC. CastromonteE. Catano-MurC. CattadoriF. CavalierF. CavannaS. CentroG. CeratiA. CervelliA. Cervera VillanuevaM. ChalifourA. ChappellE. ChardonnetN. CharitonidisA. ChatterjeeS. ChattopadhyayH. ChenM. ChenY. ChenZ. ChenD. CherdackC.Y. ChiS. ChildressA. ChiriacescuG. ChisnallK. ChoS. ChoateD. ChokheliSandhya ChoubeyA. ChristensenD. ChristianG. ChristodoulouA. ChukanovE. ChurchP. E. L. ClarkeT. E. CoanA.G. CoccoJ. A. B. CoelhoE. ConleyR. ConleyJ. M. ConradM. E. ConveryS. CopelloL. A. CorwinL. CremaldiL. CremonesiJ. I. Crespo-AnadónE. CristaldoRyan CrossA. CuddC. CuestaYanou CuiD. CussansM. DabrowskiO. DalagerH. da MottaL. Da Silva PeresC. DavidQ. DavidG. S. DaviesS. DaviniJ. DawsonK. DeR. M. de AlmeidaP. DebbinsI. De BonisM. P. DecowskiAndré de GouvêaP. C. de HolandaI. L. De Icaza AstizA. DeistingP. De JongA. DelbartD. DelepineM. A. Ramirez DelgadoA. Dell'AcquaP. De LurgioA. De RoeckD. M. DeMuthS. R. DennisC. DenshamG. DeptuchA. De RoeckValentina De RomeriG. De SouzaR. DharmapalanF. DíazJ. S. DíazS. Di DomizioL. Di GiulioP. F. DingL. Di NotoC. DistefanoR. DiurbaM. DiwanZ. DjurcicN. DokaniaS. DolanM. J. DolinskiL. DomineD. DouglasDelphine DouilletG. DrakeF. DrielsmaD. DuchesneauK. DuffyP. DunneT. DurkinH. DuyangO. DvornikovD. A. DwyerA. S. DyshkantM. EadsA. EarleD. EdmundsJ. EischL. EmbergerS. EmeryA. EreditatoC. O. EscobarG. EurinJ. J. EvansE. EwartA. C. EzeribeKevin FaheyA. FalconeC. FarneseY. FarzanJ. FélixM. SilvaE. Fernández-MartínezP. FernándezF. FerraroL. FieldsF. FilthautA. FiorentiniR. S. FitzpatrickW. FlanaganB. FlemingR. FlightDavid ForeroJ. FowlerW. FoxJ. FrancK. FrancisD. FrancoJ. FreemanJ. FreestoneJ. FriedA. FriedlandS. FuessI. K. FuricA. P. FurmanskiA. M. GagoH. GallagherA. GallasA. Gallego-RosN. GalliceV. GalymovE. GamberiniT. GambleRaj GandhiR. P. GandrajulaF. GaoS. GaoD. García-GámezM.Á. García-PerisS. GardinerDaniel GastlerG. GeB. GelliA. GendottiS. GentZ. GhorbanimoghaddamD. GibinI. Gil‐BotellaS. GilliganC. GirerdA. GiriD. GnaniO. GogotaM. GoldS. GollapinniK. GollwitzerR. A. GomesL. V. Gomez BermeoL. S. Gomez FajardoF. GonnellaJ. A. Gonzalez-CuevasD. Gonzalez-DiazM. Gonzalez-LopezM. C. GoodmanO. GoodwinSrubabati GoswamiC. GottiE. GoudzovskiC. GraceM. GrahamR. GranE. GranadosP. GrangerA. GrantC. GrantD. GratieriP. GreenL. GreenlerJ. GreerW. C. GriffithM. GrohJ. GrudzinskiK. GrzelakW. GuV. GuarinoR. GuenetteE. GuerardA. GuglielmiB. GuoK. K. GuthikondaR. GutierrezP. GuzowskiM. M. GuzzoS. GwonA. HabigH. K. HadavandRolf HaenniRobert G. HahnJ. HaistonP. Hamacher-BaumannT. HamernikP. HamiltonJ. HanD. A. HarrisJ. HartnellJ. HartonT. HasegawaC. HasnipR. HatcherK. W. HatfieldA. HatzikoutelisC. HayesE. HazenA. HeaveyK. M. HeegerJ. HeiseK. HennessyS. HenryM. A. Hernández MorquechoK. HernerL. HertelV HewesA. HigueraT. S. HillS. J. HillierA. HimmelJ. HoffCarole HohlA. HolinE. W. HoppeG. A. Horton-SmithM. HostertA. HourlierB. HowardR. HowellJ. HuangJ. HuangJ. HugonG. IlesNataša Maleš IlićM. IliescuR. IllingworthAra IoannisianL. IsenhowerR. ItayA. IzmaylovStephen JacksonVarun JainE. JamesB. JargowskyF. JedinyC. JenaYuna JeongC. Jesús-VallsX. JiL. W. JiangS. JiménezA. JipaR. A. JohnsonB. J. P. JonesS. JonesM. JudahC. K. JungT. JunkY.-J. JwaM. KabirnezhadA. KabothІ. КаденкоI. KakorinF. KamiyaN. KaneshigeG. KaragiorgiG. KaramanA. KarcherM. KarolakY. KaryotakisS. KasaiS. P. KasettiL. KashurN. KazaryanE. KearnsP. KeenerKevin J. KellyE. KempO. KemulariaW. KetchumS. H. KettellM. KhabibullinA. KhotjantsevA. KhvedelidzeD. KimB. KingBrian P. KirbyM. KirbyJ. KleinK. KoehlerL. W. KoernerS. KohnP. P. KollerL. KolupaevaM. KordoskyT. KoscU. KöseV. Alan KosteleckýK. KothekarF. KrennrichI. KresloY. KudenkoV. A. KudryavtsevS. KulaginJason KumarPraveen KumarP. KunzeN. KuritaC. KuruppuV. KusT. KutterA. LambertB. LandK. LandeC. LaneK. LangT. LangfordJ. LarkinP. LasorakD. LastC. LastoriaA. LaundrieA. LawrenceI. LazanuR. LaZurT. LeS. LeardiniJ. LearnedP. LebrunT. LeCompteG. Lehmann MiottoRalf LehnertM. A. Leigui de OliveiraM. LeitnerL. LiS. W. LiT. LiY. LiH. LiaoC. LinQing LinShukuan LinA. ListerB. R. LittlejohnJ. LiuS. LockwitzT. LoewM. Lokajı́čekI. LomidzeK. LongKai LooD. LorcaT. LordJ. M. LoSeccoW. C. LouisX. -G. LuX.-G. LuX. LuoN. LurkinT. LuxV. P. LuzioD. B. MacFarlaneA.A. MachadoP. MachadoC.T. MaciasJ.R. MacierA. MaddalenaA. MaderaP. MadiganS. MagillK. MahnA. MaioA. MajorJ.A. MaloneyG. MandrioliR. C. MandujanoJ. ManeiraL. ManentiS. ManlyA. MannK. ManolopoulosM. Manrique PlataVenkata Narasimha ManyamL. ManzanillasM. MarchanA. MarchionniW. MarcianoDanny MarfatiaC. MarianiJ. MaricicRodolphe MarieF. MarinhoA. D. MarinoD. MarsdenM. MarshakC. MarshallJ. MarshallJ. MarteauJ. Martín-AlboN. MartinezD. A. Martínez CaicedoS. MartynenkoK. MasonA. MastbaumMehedi MasudS. MatsunoJ. MatthewsC. MaugerN. MauriK. MavrokoridisI. MawbyR. MazzaA. MazzacaneE. MazzucatoT. McAskillE. McCluskeyN. McConkeyK. S. McFarlandC. McGrewA. McNabA. MefodievPoonam MehtaP. MelasOlga MenaS. MenaryH. MéndezD. P. MéndezA. MenegolliG. MengM. D. MessierW. MetcalfT. MettlerMatthew MewesH. MeyerT. MiaoG. MichnaT. MiedemaJ. MigendaV. MikolaR. MilincicW. MillerJ. MillsChristopher J. MilneO. MineevO. G. MirandaSandeep MiryalaC. S. MishraS. MishraA. MislivecD. MladenovI. MocioiuK. MoffatN. MoggiR. MohantaT. MohayaiN. MokhovJ. MolinaL. Molina BuenoA. MontanariC. MontanariD. MontanariL. M. Montaño ZetinaJ. MoonM. MooneyA. F. MoorD. MorenoC. MorrisC. MosseyE. MotukC. A. MouraJ. MousseauW. MuL. MualemJ. MuellerM. MuetherS. MufsonF. MuheimA. MuirMichael MulhearnD. MunfordH. MuramatsuS. MurphyJ. MusserJ. NachtmanS. NaguM. NalbandyanR. NandakumarD. NaplesS. NaritaD. Navas-NicolásA. Navrer-AgassonN. NayakM. Nebot-GuinotK. NegishiJ. K. NelsonJ. NesbitM. NessiD. M. NewboldM. NewcomerD. NewhartH. A. NewtonR. J. NicholF. Nicolas-ArnaldosE. NinerK. NishimuraA. NormanA. NorrickR. NorthropP. NovellaJ. NowakM. OberlingJ. P. Ochoa‐RicouxA. Olivares Del CampoA. OlivierA. OlshevskiyY. OnelY. OnishchukJ. OttL. PaganiS. PakvasaG. PalacioO. PalamaraS. PalestiniJ. PaleyM. PallaviciniC. PalomaresJ. L. Palomino-GalloE. PanticV. PaoloneV. PapadimitriouR. PapaleoA. PapanestisS. ParamesvaranStephen ParkeZ. ParsaM. ParvuS. PascoliL. PasqualiniJ. PasternakJ. R. PaterC. PatrickL. PatriziiR. B. PattersonS. PattonT. PatzakA. PaudelB. PaulosL. PaulucciZ. PavlovicG. PawloskiD. PayneV. PecS. J. M. PeetersE. PennacchioA. PenzoO. L. G. PeresJames PerryD. PersheyG. PessinaG. PetrilloC. PettaR. PettiF. PiastraL. PickeringF. PietropaoloR. PlunkettR. PolingX. PonsN. PoonthottathilS. PordesJ. PorterM. PotekhinR. PotenzaB. V. K. S. PotukuchiJ. PozimskiM. PozzatoS. PrakashT. PrakashS. PrinceD. PugnéreX. QianM. C. Q. BazettoJ. L. RaafV. RadekaJ. RademackerB. RadicsA. RafiqueE. RaguzinMudit RaiM. RajaoalisoaIgor RakhnoA. RakotonandrasanaL. RakotondravohitraY. A. RamachersR. RameikaM. A. Ramirez DelgadoB. RamsonA. RappoldiG. RaselliP. N. RatoffS. RautR. F. RazakamiandraJ. S. RéalB. RebelM. Reggiani-GuzzoT. RehakJ. ReichenbacherS. D. ReitznerHaifa Rejeb SfarA. RenshawS. ResciaF. ResnatiA. ReynoldsC. RiccioG. RiccobeneL. C. J. RiceJ. S. RicolA. RigamontiY. RigautD. RiveraLynn RochesterM. RodaP. RodriguesM. J. Rodriguez AlonsoE. Rodriguez BonillaJ. Rodriguez RondonS. Rosauro-AlcarazM. RosenbergP. RosierB. RoskovecM. RossellaJ. RoutP. RoyS. RoyA. RubbiaC. RubbiaF. C. RubioB. RussellD. RuterboriesR. SaakyanS. SacerdotiT. SaffordR. SahayNandini SahuP. SalaN. P. SamiosO. SamoylovM. C. SánchezD. A. SandersD. P. C. SankeyS. SantanaM. Santos-MaldonadoN. SaoulidouP. SapienzaC. SarastyIna SarčevićG. SavageV. SavinovA. ScaramelliA. ScarffA. ScarpelliTilman E. SchäfferH. SchellmanP. SchlabachD. SchmitzK. ScholbergA. SchukraftE. SegretoJ. SensenigI. S. SeongA. SergiD. SgalabernaM. H. ShaevitzS. ShafaqM. ShammaR. SharankovaH. SharmaR. SharmaR. KumarT. ShawC. H. Shepherd-ThemistocleousShin SasakiD. ShooltzRobert ShrockL. SimardF. SimonN. SimosJ. SinclairG. SinevJ. SinghJ. SinghV. SinghRoland SiposF. W. SippachG. SirriA. SitrakaK. SiyeonK. Skarpaas VIIIA. SmithE. SmithPhilip N. SmithJ. SmolíkM. SmyE. L. SniderP. SnopokM. Soares NunesH. SobelM. SöderbergC. J. Solano SalinasS. Söldner‐RemboldN. SolomeyV. N. SolovovW. E. SondheimM. SorelJ. Soto-OtónA. SousaK. Soustružnı́kF. SpagliardiM. SpanuJ. SpitzN.J.C. SpoonerK. SpurgeonR. StaleyM. StancariL. StancoR. StanleyR. SteinH. SteinerJ. StewartB. StillwellJ. StockF. StockerT. StokesM. StraitT. StraussS. StriganovA. StuartJ. G. SuarezH. SullivanD. J. SummersA. SurdoV. SusicL. SuterC. M. SuteraR. SvobodaB. SzczerbinskaA. M. SzelcR. L. TalagaH. A. TanakaB. Tapia OreguiA. TapperS. TariqE. TatarR. TayloeA. M. TekluM. TentiK. TeraoC. A. TernesF. TerranovaG. TesteraA. TheaJ. ThompsonC. ThornS.C. TimmJ. ToddA. TonazzoD. TorbunovM. TortiM. TórtolaF. TortoriciD. TotaniM. ToupsC. TouramanisJ. TrevorS. TrilovW. H. TrzaskaY.-T. TsaiZ. TsamalaidzeK. V. TsangN. TsveravaS. TufanliC. E. TullE. TyleyM. TzanovM. A. UchidaJ. UrheimT. UsherS. UzunyanM. R. VaginsP. VahleG. A. ValdiviessoE. ValenciaZ. VallariJ. W. F. ValleS. VallecorsaR. Van BergR. G. Van de WaterF. VaraniniD. VargasG. VarnerJ. VaselS. VasinaG. VasseurN. VaughanK. VaziriS. VenturaAnamaria VerdugoS. VerganiM. A. VermeulenM. VerzocchiM. VicenziH. Vieira de SouzaC. VignoliC. VilelaB. VirenT. VrbaT. WąchałaA. V. WaldronM. WallbankH. WangJ. WangM. WangYuhua WangYe WangK. WarburtonD. WarnerM. WasckoD. WatersA. WatsonP. WeatherlyA. WeberM. WeberH. WeiA. WeinsteinD. WenmanM. WetsteinAndrew WhiteL. WhiteheadD. WhittingtonM. J. WilkingC. WilkinsonZ. WilliamsF. F. WilsonR. J. WilsonJ. WolcottT. WongjiradAshley WoodK. WoodE. WorcesterM. WorcesterC. WretW. WuW. WuY. J. XiaoE. YandelG. YangK. YangS. YangT. YangA. YankelevichN. YershovK. YoneharaT. YoungBoxiang YuH. Z. YuJ. S. YuWei YuanR. ZakiJ. ZálešâkL. ZambelliB. ZamoranoA. ZaniL. ZazuetaG. ZeitG. P. ZellerJoseph ZennamoK. ZeugC. ZhangM. ZhaoE. ZhivunG. ZhuP. ZilbermanE. D. ZimmermanM. ZitoS. ZucchelliJ. ZuklinV. ZutshiR. Zwaska
    13
    Citation
    250
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    This report describes the conceptual design of the DUNE near detector
    Keywords:
    Conceptual design
    Conceptual framework
    One of the greatest uncertainties in any modeling of inner engine of core-collapse supernova (CCSN) is neutrino flavor conversions driven by neutrino self-interactions. We carry out large-scale numerical simulations of multi-energy, multi-angle, three-flavor framework, and general relativistic quantum kinetic neutrino transport in spherical symmetry with an essential set of neutrino-matter interactions under a realistic fluid profile of CCSN. Our result suggests that the neutrino heating in the gain region is reduced by $\sim 40\%$ due to fast neutrino-flavor conversion (FFC). We also find that the total luminosity of neutrinos is enhanced by $\sim 30 \%$, for which the substantial increase of heavy-leptonic neutrinos by FFCs are mainly responsible. This study provides evidence that FFC has a significant impact on the delayed neutrino-heating mechanism.
    Type II supernova
    Citations (1)
    Neutrino Oscillations in the presence of strong gravitational fields are studied specifically for Majorana neutrinos. We look at ultra high energy neutrinos $(\sim 1$ PeV) emanating from Active Galactic Nuclei (AGN). Fluxes of different flavor neutrinos are estimated and probabilities for different neutrino transitions calculated.
    Cosmic neutrino background
    Solar neutrino problem
    Neutrino astronomy
    Core-collapse supernovae (SNe) are one of the most powerful cosmic sources of neutrinos, with energies of several MeV. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final states. Detecting these neutrinos from Earth and analyzing the emitted signals present a unique opportunity to explore the neutrino mass ordering problem. This research outlines the detection of neutrinos from SNe and their relevance in understanding the neutrino mass ordering. The focus is on developing a model-independent analysis strategy, achieved by comparing distinct detection channels in large underground detectors. The objective is to identify potential indicators of mass ordering within the neutrino sector. Additionally, a thorough statistical analysis is performed on the anticipated neutrino signals for both mass orderings. Despite uncertainties in supernova explosion parameters, an exploration of the parameter space reveals an extensive array of models with significant sensitivity to differentiate between mass orderings. The assessment of various observables and their combinations underscores the potential of forthcoming supernova observations in addressing the neutrino mass ordering problem.
    Cosmic neutrino background
    Neutrino astronomy
    Type II supernova
    Solar neutrino problem
    Citations (1)
    The search for ultra-high energy neutrinos is more than half a century old. While the hunt for these neutrinos has led to major leaps in neutrino physics, including the detection of astrophysical neutrinos, neutrinos at the EeV energy scale remain undetected. Proposed strategies for the future have mostly been focused on direct detection of the first neutrino interaction, or the decay shower of the resulting charged particle. Here we present an analysis that uses, for the first time, an indirect detection strategy for EeV neutrinos. We focus on tau neutrinos that have traversed Earth, and show that they reach the IceCube detector, unabsorbed, at energies greater than 100 TeV for most trajectories. This opens up the search for ultra-high energy neutrinos to the entire sky. We use ten years of IceCube data to perform an analysis that looks for secondary neutrinos in the northern sky, and highlight the promise such a strategy can have in the next generation of experiments when combined with direct detection techniques.
    Neutrino astronomy
    Cosmic neutrino background
    Solar neutrino problem
    Citations (1)
    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. Most SN neutrinos are emitted in the accretion and cooling phase, during which the flavor-dependent differences of the emitted neutrino spectra are small and rather uncertain. Therefore the discrimination between neutrino mixing scenarios using these neutrinos should rely on observables independent of the SN neutrino spectra. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, $\sin^2θ_{13}\gg 10^{-5}$. These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization $ν_e$ burst--a robust feature found in all modern SN simulations--can be sufficient to fix both the neutrino hierarchy and to decide whether $θ_{13}$ is ``small'' or ``large.''
    Cosmic neutrino background
    Solar neutrino problem
    Neutrino astronomy
    The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the $\nu_e$ spectral parameters of the neutrino burst will be considered.
    Electron neutrino
    Solar neutrino problem
    Neutrino astronomy
    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\theta_{13}$ and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.
    Cosmic neutrino background
    Neutrino astronomy
    Solar neutrino problem
    The relic neutrinos from old supernova explosions are among the most ancient neutrino fluxes within experimental reach. Thus, the diffuse supernova neutrino background (DSNB) could teach us if neutrino masses were different in the past (redshifts $z\ensuremath{\lesssim}5$). Oscillations inside the supernova depend strongly on the neutrino mass-squared differences and the values of the mixing angles, rendering the DSNB energy spectrum sensitive to variations of these parameters. Considering a purely phenomenological parametrization of the neutrino masses as a function of redshift, we compute the expected local DSNB spectrum here on Earth. Given the current knowledge of neutrino oscillation parameters, especially the fact that $|{U}_{e3}{|}^{2}$ is small, we find that the ${\ensuremath{\nu}}_{e}$ spectrum could be significantly different from standard expectations if neutrinos were effectively massless at $z\ensuremath{\gtrsim}1$ as long as the neutrino mass ordering is normal. On the other hand, the ${\overline{\ensuremath{\nu}}}_{e}$ flux is not expected to be significantly impacted. Hence, a measurement of both the neutrino and antineutrino components of the DSNB should allow one to test the possibility of recent neutrino mass generation.
    Citations (12)
    We investigate the effects of nonstandard four-fermion neutrino-neutrino interactions on the flavor evolution of dense neutrino gases. We find that in the regions where the neutrino-neutrino refractive index leads to collective flavor oscillations, the presence of new neutrino interactions can produce flavor equilibration in both normal and inverted neutrino mass hierarchy. In realistic supernova environments, these effects are significant if the nonstandard neutrino-neutrino interaction strength is comparable to the one expected in the standard case, dominating the ordinary matter potential. However, very small nonstandard neutrino-neutrino couplings are enough to trigger the usual collective neutrino flavor transformations in the inverted neutrino mass hierarchy, even if the mixing angle vanishes exactly.
    Solar neutrino problem
    Citations (56)
    The relic neutrinos from old supernova explosions are among the most ancient neutrino fluxes within experimental reach. Thus, the diffuse supernova neutrino background (DSNB) could teach us if neutrino masses were different in the past (redshifts $z\lesssim 5$). Oscillations inside the supernova depend strongly on the neutrino mass-squared differences and the values of the mixing angles, rendering the DSNB energy spectrum sensitive to variations of these parameters. Considering a purely phenomenological parameterization of the neutrino masses as a function of redshift, we compute the expected local DSNB spectrum here on Earth. Given the current knowledge of neutrino oscillation parameters, specially the fact that $|U_{e3}|^2$ is small, we find that the $ν_e$ spectrum could be significantly different from standard expectations if neutrinos were effectively massless at $z\gtrsim1$ as long as the neutrino mass ordering is normal. On the other hand, the $\overlineν_e$ flux is not expected to be significantly impacted. Hence, a measurement of both the neutrino and antineutrino components of the DSNB should allow one to test the possibility of recent neutrino mass generation.
    Neutrino astronomy
    Massless particle
    Cosmic neutrino background
    Solar neutrino problem
    Citations (1)