Zoonotic diseases pose a significant threat to human, animal, and environmental health. The Economic Community of West African States (ECOWAS) has endured a significant burden of zoonotic disease impacts. To address zoonotic disease threats in ECOWAS, a One Health Zoonotic Disease Prioritization (OHZDP) was conducted over five days in December 2018 to prioritize zoonotic diseases of greatest regional concern and develop next steps for addressing these priority zoonoses through a regional, multisectoral, One Health approach.The OHZDP Process uses a mixed methods prioritization process developed by the United States Centers for Disease Control and Prevention. During the OHZDP workshop, representatives from human, animal, and environmental health ministries from all 15 ECOWAS Member States used a transparent and equal process to prioritize endemic and emerging zoonotic diseases of greatest regional concern that should be jointly addressed by One Health ministries and other partners. After the priority zoonotic diseases were identified, participants discussed recommendations and further regional actions to address the priority zoonoses and advance One Health in the region.ECOWAS Member States agreed upon a list of seven priority zoonotic diseases for the region - Anthrax, Rabies, Ebola and other viral hemorrhagic fevers (for example, Marburg fever, Lassa fever, Rift Valley fever, Crimean-Congo Hemorrhagic fever), zoonotic influenzas, zoonotic tuberculosis, Trypanosomiasis, and Yellow fever. Participants developed recommendations and further regional actions that could be taken, using a One Health approach to address the priority zoonotic diseases in thematic areas including One Health collaboration and coordination, surveillance and laboratory, response and preparedness, prevention and control, workforce development, and research.ECOWAS was the first region to use the OHZDP Process to prioritize zoonotic disease of greatest concern. With identified priority zoonotic diseases for the region, ECOWAS Member States can collaborate more effectively to address zoonotic diseases threats across the region using a One Health approach. Strengthening national and regional level multisectoral, One Health Coordination Mechanisms will allow ECOWAS Member States to advance One Health and have the biggest impact on improving health outcomes for both people and animals living in a shared environment.
Understanding the effectiveness of a school closure in limiting social interaction and the economic impact of school closure on households is critical when developing guidelines to prevent spread of pandemic influenza. A New York City survey conducted in June 2009 in 554 households affected by the 2009 pandemic influenza H1N1-related school closures showed that, during closure, 30% of students visited at least 1 locale outside their homes. If all the adults in the home were employed, an ill child was less likely to leave home. In 17% of the households, at least 1 adult missed some work because of the closure. If all adults in the home were employed, someone was more likely to take time off work. If other children were in the household, it was less likely that an adult took time off work. The findings of our study will be important when developing future pandemic school-closure guidance.
The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.
Backyard poultry flocks have increased in popularity concurrent with an increase in live poultry-associated salmonellosis (LPAS) outbreaks. Better understanding of practices that contribute to this emerging public health issue is needed. We reviewed outbreak reports to describe the epidemiology of LPAS outbreaks in the United States, examine changes in trends, and inform prevention campaigns. LPAS outbreaks were defined as ≥2 culture-confirmed human Salmonella infections linked to live poultry contact. Outbreak data were obtained through multiple databases and a literature review. During 1990-2014, a total of 53 LPAS outbreaks were documented, involving 2,630 illnesses, 387 hospitalizations, and 5 deaths. Median patient age was 9 years (range <1 to 92 years). Chick and duckling exposure were reported by 85% and 38% of case-patients, respectively. High-risk practices included keeping poultry inside households (46% of case-patients) and kissing birds (13%). Comprehensive One Health strategies are needed to prevent illnesses associated with live poultry.
Background In May 2008, PulseNet detected a multistate outbreak of Salmonella enterica serotype Saintpaul infections. Initial investigations identified an epidemiologic association between illness and consumption of raw tomatoes, yet cases continued. In mid-June, we investigated two clusters of outbreak strain infections in Texas among patrons of Restaurant A and two establishments of Restaurant Chain B to determine the outbreak's source. Methodology/Principal Findings We conducted independent case-control studies of Restaurant A and B patrons. Patients were matched to well controls by meal date. We conducted restaurant environmental investigations and traced the origin of implicated products. Forty-seven case-patients and 40 controls were enrolled in the Restaurant A study. Thirty case-patients and 31 controls were enrolled in the Restaurant Chain B study. In both studies, illness was independently associated with only one menu item, fresh salsa (Restaurant A: matched odds ratio [mOR], 37; 95% confidence interval [CI], 7.2–386; Restaurant B: mOR, 13; 95% CI 1.3–infinity). The only ingredient in common between the two salsas was raw jalapeño peppers. Cultures of jalapeño peppers collected from an importer that supplied Restaurant Chain B and serrano peppers and irrigation water from a Mexican farm that supplied that importer with jalapeño and serrano peppers grew the outbreak strain. Conclusions/Significance Jalapeño peppers, contaminated before arrival at the restaurants and served in uncooked fresh salsas, were the source of these infections. Our investigations, critical in understanding the broader multistate outbreak, exemplify an effective approach to investigating large foodborne outbreaks. Additional measures are needed to reduce produce contamination.
Abstract Transmission of SARS-CoV-2, the virus that causes COVID-19, from people to companion animals has been reported globally. Between March 2020 and January 2021, the United States reported 94 companion animals with SARS-CoV-2. While most animals with SARS-CoV-2 have mild illness, 10 animals (5 dogs, 5 cats) died around the time of SARS-CoV-2 diagnosis. In one dog, histopathologic changes suggest SARS-CoV-2 exacerbated a severe chronic respiratory disease and contributed to death. In one cat, SARS-CoV-2 was associated with histopathologic changes suggesting the virus caused clinical signs that resulted in euthanasia. In the remaining eight animals, SARS-CoV-2 infection was an incidental finding (4 dogs, 4 cats). This report provides evidence that in rare circumstances, SARS-CoV-2 can contribute to or cause death in companion animals with underlying conditions.