Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs’ ability to differentiate into multiple tissues, these cells represent a promising tool for new cell‐based therapies. However, for tissue engineering applications, it is critical to start with a well‐defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most‐used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.
Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14-, and CD34-) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O'Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.
Maternal hypercaloric exposure during pregnancy and lactation is a risk factor for developing diseases associated with inflammation such as obesity, diabetes and, neurological diseases in the offspring. Neuroinflammation might modulate neuronal activation and flavonoids are dietary compounds that have been proven to exert anti-inflammatory properties. Thus, the aim of the present study is to evaluate the effect of maternal supplementation with flavonoids (kaempferol-3-O-glucoside and narirutin) on the prevention of depression-like behaviour in the female offspring of dams fed with an obesogenic diet during the perinatal period. Maternal programming was induced by high fat (HFD), high sugar (HSD), or cafeteria diets exposure and depressive like-behaviour, referred to as swimming, climbing, and immobility events, was evaluated around postnatal day 56⁻60 before and after 30 mg/kg i.p. imipramine administration in the female offspring groups. Central inflammation was analyzed by measuring the TANK binding kinase 1 (TBK1) expression. We found that the offspring of mothers exposed to HSD programming failed to show the expected antidepressant effect of imipramine. Also, imipramine injection, to the offspring of mothers exposed to cafeteria diet, displayed a pro-depressive like-behaviour phenotype. However, dietary supplementation with flavonoids reverted the depression-like behaviour in the female offspring. Finally, we found that HSD programming increases the TBK1 inflammatory protein marker in the hippocampus. Our data suggest that maternal HSD programming disrupts the antidepressant effect of imipramine whereas cafeteria diet exposure leads to depressive-like behaviour in female offspring, which is reverted by maternal flavonoid supplementation.
Previous clinical studies have reported the clinical effectiveness of non‑animal stabilized hyaluronic acid (NASHA) and adipose‑derived mesenchymal stromal/stem cells (MSC) in the treatment of knee osteoarthritis (OA). Unlike MSC secreted mediators, in vitro anti‑inflammatory effects of NASHA have not been evaluated. We aimed to evaluate and compare the anti‑inflammatory effect of NASHA and MSC conditioned medium (stem cell‑conditioned medium; SC‑CM), in an explant‑based coculture model of OA. Cartilage and synovial membrane from seven patients undergoing total knee arthroplasty were used to create a coculture system. Recombinant IL‑1β was added to the cocultures to induce inflammation. Four experimental groups were generated: i) Basal; ii) IL‑1β; iii) NASHA (NASHA + IL‑1β); and iv) SC‑CM (SC‑CM + IL‑1β). Glycosaminoglycans (GAG) released in the culture medium and of nitric oxide (NO) production were quantified. Gene expression in cartilage and synovium of IL‑1β, matrix metallopeptidase 13 (MMP13), ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5) and tissue inhibitor of metalloproteinases 1 (TIMP1) was measured by reverse transcription‑quantitative PCR. Media GAG concentration was decreased in cocultures with NASHA and SC‑CM (48 h, P<0.05; 72 h, P<0.01) compared with IL‑1β. Production of NO was significantly lower only in SC‑CM after 72 h (P<0.01). In cartilage, SC‑CM inhibited the expression of IL‑1β, MMP13 and ADAMTS5, while NASHA had this effect only in MMP13 and ADAMTS5. In synovium, SC‑CM decreased the expression level of MMP13 and ADAMTS5, while NASHA only decreased ADAMTS5 expression. Both NASHA and SC‑CM increased TIMP1 expression in cartilage and synovium. Treatments with NASHA and SC‑CM were shown to be a therapeutic option that may help counteract the catabolism produced by the inflammatory state in knee OA. The anti‑inflammatory mediators produced by MSC promote a lower expression of inflammatory targets in our study model.
Maternal overnutrition including pre-pregnancy, pregnancy and lactation promotes a lipotoxic insult leading to metabolic dysfunction in offspring. Diet-induced obesity models (DIO) show that changes in hypothalamic mitochondria fusion and fission dynamics modulate metabolic dysfunction. Using three selective diet formula including a High fat diet (HFD), Cafeteria (CAF) and High Sugar Diet (HSD), we hypothesized that maternal diets exposure program leads to selective changes in hypothalamic mitochondria fusion and fission dynamics in male offspring leading to metabolic dysfunction which is exacerbated by a second exposure after weaning. We exposed female Wistar rats to nutritional programming including Chow, HFD, CAF, or HSD for 9 weeks (pre-mating, mating, pregnancy and lactation) or to the same diets to offspring after weaning. We determined body weight, food intake and metabolic parameters in the offspring from 21 to 60 days old. Hypothalamus was dissected at 60 days old to determine mitochondria-ER interaction markers by mRNA expression and western blot and morphology by transmission electron microscopy (TEM). Mitochondrial-ER function was analyzed by confocal microscopy using hypothalamic cell line mHypoA-CLU192. Maternal programming by HFD and CAF leads to failure in glucose, leptin and insulin sensitivity and fat accumulation. Additionally, HFD and CAF programming promote mitochondrial fusion by increasing the expression of MFN2 and decreasing DRP1, respectively. Further, TEM analysis confirms that CAF exposure after programing leads to an increase in mitochondria fusion and enhanced mitochondrial-ER interaction, which partially correlates with metabolic dysfunction and fat accumulation in the HFD and CAF groups. Finally, we identified that lipotoxic palmitic acid stimulus in hypothalamic cells increases Ca2+ overload into mitochondria matrix leading to mitochondrial dysfunction. We concluded that maternal programming by HFD induces hypothalamic mitochondria fusion, metabolic dysfunction and fat accumulation in male offspring, which is exacerbated by HFD or CAF exposure after weaning, potentially due to mitochondria calcium overflux.
Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 72 tumor suppressors, thus they have been collectively named as "oncomiRs" [5].Deregulation of microRNAs expression strongly alters key events leading to cancer, including differentiation, proliferation, apoptosis, migration, invasion and metastasis, and chemotherapy resistance.In consequence, the identification of deregulated microRNAs in cancer and their respective targets may provide potential diagnostic and prognostic tumor biomarkers and represent new therapeutic targets for cancer therapy.