The development of pre-hierarchical follicle (PHF), especially small yellow follicles (SYFs), directly affects the recruitment of dominant follicles and thus affects the egg-laying performance of chickens. However, the development of PHF, especially the development of SYF, and its regulatory mechanism remain unclear. Therefore, we performed transcriptomic and metabolomic analyses of large white follicles (LWFs) and SYFs in chickens. Transcriptome sequencing revealed 258 differentially expressed genes (DEGs) between SYF and LWF, of which 172 were upregulated and 86 were downregulated. The DEGs were mapped to 17 KEGG pathways, mainly the gap junction, calcium signaling, and neuroactive ligand-receptor interaction pathways. The results of the metabolome analysis revealed 129 significant differential metabolites (DMs), including 36 upregulated DMs and 93 downregulated DMs. The DMs were mapped to 9 KEGG pathways for follicle tissue, which included mainly glutathione metabolism, alpha-linolenic acid metabolism, and tryptophan metabolism, etc. The combined transcriptional and metabolic analysis revealed significantly enriched pathways, and four metabolically related pathways, including glutathione metabolism, alpha-linolenic acid metabolism, linoleic acid metabolism, and pyrimidine metabolism, were identified. Glutathione metabolism is a critical signaling pathway that may affect ovarian follicle development to regulate the SYF reserve process in chickens. These results can act as a reference for improving the egg-laying performance of Tengchong snow chickens.
Single-cell sequencing (SCS) uses a single cell as the research material and involves three dimensions: genes, phenotypes and cell biological mechanisms. This type of research can locate target cells, analyze the dynamic changes in the target cells and the relationships between the cells, and pinpoint the molecular mechanism of cell formation. Currently, a common problem faced by animal husbandry scientists is how to apply existing science and technology to promote the production of high-quality livestock and poultry products and to breed livestock for disease resistance; this is also a bottleneck for the sustainable development of animal husbandry. In recent years, although SCS technology has been successfully applied in the fields of medicine and bioscience, its application in poultry science has been rarely reported. With the sustainable development of science and technology and the poultry industry, SCS technology has great potential in the application of poultry science (or animal husbandry). Therefore, it is necessary to review the innovation of SCS technology and its application in poultry science. This article summarizes the current main technical methods of SCS and its application in poultry, which can provide potential references for its future applications in precision breeding, disease prevention and control, immunity, and cell identification.
Tengchong snow, which has white feathers and black meat, is one of the most important black-bone chicken breeds and a genetic treasure of black food in China. Although the black meat traits are dominant, there are some chickens with white meat traits born in the process of folk selection and breeding. The purpose of this study was to compare the differences in skeletal muscle development between Tengchong snow black meat chickens (BS) and white meat chickens (WS), as well as whether excessive melanin deposition has an effect on skeletal muscle development. The BS and WS groups were selected to determine their muscle development difference at stages of 1, 7, 14, 21, and 42 days, using histological stain methods to analyze the development and composing type of breast and leg muscle fibers, as well as the count of melanin in BS muscle fibers. Finally, we were validated key candidate genes associated with muscle development and melanin synthesis. The results showed that BS breast muscle development was inhibited at 7, 14, and 21 days, while the leg muscle was inhibited at 7, 14, 21, and 42 days, compared to WS. Melanin deposition was present in a temporal migration pattern and was greater in the leg muscles than in the breast muscles, and it focused around blood vessels, as well as the epithelium, perimysium, endomysium, and connective tissue. Additionally, melanin produced an inhibitory effect similar to MSTN during skeletal muscle fiber development, and the inhibition was strongest at the stage of melanin entry between muscle fibers, but the precise mechanisms need to be confirmed. This study revealed that melanin has an inhibitory effect on the early development of skeletal muscle, which will provide new insights into the role of melanin in the black-boned chicken and theoretical references for the future conservation and utilization of black-boned chicken.
Tengchong Snow chickens are one of the most precious, black-boned chickens in Yunnan province and usually produce black meat. However, we found a small number of white meat traits in the chicken population during feeding. In order to determine the pattern of melanin deposition and the molecular mechanism of formation in the Tengchong Snow chicken, we measured the luminance value (L value) and melanin content in the skin of black meat chickens (Bc) and white meat chickens (Wc) using a color colorimeter, ELISA kit, and enzyme marker. The results showed that the L value of skin tissues in black meat chickens was significantly lower than that of white meat chickens, and the L value of skin tissues gradually increased with an increase in age. The melanin content of skin tissues in black meat chickens was higher than that of white meat chickens, and melanin content in the skin tissues gradually decreased with an increase in age, but this difference was not significant (p > 0.05); the L value of skin tissues in black meat chickens was negatively correlated with melanin content, and the correlation coefficient was mostly above −0.6. In addition, based on the phenotypic results, we chose to perform the comparative transcriptome profiling of skin tissues at 90 days of age. We screened a total of 44 differential genes, of which 32 were upregulated and 12 were downregulated. These DEGs were mainly involved in melanogenesis, tyrosine metabolism and RNA transport. We identified TYR, DCT, and EDNRB2 as possible master effector genes for skin pigmentation in Tengchong Snow black meat chickens through DEGs analysis. Finally, we measured the mRNA of TYR, DCT, MC1R, EDNRB2, GPR143, MITF, and TYRP1 genes through a quantitative real-time polymerase chain reaction (qPCR) and found that the mRNA of all the above seven genes decreased with increasing age. In conclusion, our study initially constructed an evaluation system for the black-boned traits of Tengchong Snow chickens and found key candidate genes regulating melanin deposition, which could provide an important theoretical basis for the selection and breeding of black-boned chickens.
Abstract Background Although multiple chicken genomes have been assembled and annotated, the number of protein-coding genes in chicken genomes is still uncertain due to the low quality of these genome assemblies and limited resources used in gene annotations. Results To fill the gap, we annotated our four recently assembled high-quality genomes of four indigenous chickens with distinct traits using a combination of RNA-seq- and homology-based approach. Our annotated genes in the four chickens recovered 51 of the 274 “missing” genes in birds in general and 36 of the 174 “missing” genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in each chicken breed, we found a total of 1,420 new protein-coding genes in the four chicken genomes, which were missed in the reference chicken genome annotations. These newly annotated genes (NAGs) tend to have high G/C contents and be located in sub-telomeric regions of almost all assembled chromosomes and some unplaced contigs. The NAGs showed tissue-specific expression and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. We found that most of the NAGs also are encoded in previously assembled chicken genomes. The NAGs form functional modules with homology-supported genes that are involved in many important biological pathways. We also identified numerous unique genes in each indigenous chicken genome that might be related to the unique traits of each breed. Conclusion The ubiquitous presence of the NAGs in various chicken genomes indicate that they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.
Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches.