Matrix metalloproteinases are a group of proteases involved in the regulation of ovarian follicular development and ovulation. Among the different MMPs, MMP13 is known to play an important role in reproduction. Therefore, this study aimed to screen the molecular genetic markers of the MMP13 gene that affect the egg-laying performance of Chahua chickens. Polymerase chain reaction (PCR) and sequencing were performed in the 5′ regulation region of the MMP13 gene to detect loci significantly related to the egg-laying performance of Chahua chickens. A double fluorescence reporting system, quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to study whether gene expression was regulated by identified sites, providing a theoretical basis to improve egg production in Chahua chickens. The results revealed six single nucleotide polymorphisms (SNPs; A-1887T, T-1889C, A-1890T, T-2252C, T-2329C, and C-2360A) in the promoter region of the MMP13 gene. Further analysis revealed that hens with T-1890-C-1889-T-1887/T-1890-C-1889-T-1887 (mutant type, MT) had an earlier age at first egg (AFE) than hens with A-1890-T-1889-A-1887/A-1890-T-1889-A-1887 (wild type, WT; p < 0.05). RT-qPCR showed that the relative expression level of the MMP13 gene in the ovarian tissues of individuals with the mutation was higher than that of individuals with the wild gene (p < 0.05). Western blot results confirmed higher levels of the MMP13 protein in MT ovaries compared to those in WT ovaries. Thus, this study suggests that mutation sites on the MMP13 promoter may affect gene expression. In conclusion, the MMP13 gene in Chahua chickens may be significant for egg-laying performance, and the polymorphism in its promoter region could be used as a molecular marker to improve egg-laying performance.
Unlike other chicken breeds, Xichuan Black Bone (XBB) chickens are an established breed in China with excellent production performance and unique characteristics, including black meat, beaks, skin, bones, and legs, and they produce blue-shelled eggs. The Tengchong Snow (TS) chicken breed has relatively lower growth performance than commercial breeds but is considered one of the main genetic treasures of black meat in China. To improve the production and meat quality traits of the TS chickens by hybridization, the current study aimed to investigate the growth performance, carcass indices, meat quality physical properties, and muscle fiber traits of fiber traits of F1 crosses of TS with XBB chickens. Three groups of crossbreeding combinations were produced: (1) XT group (XBB × TS ), (2) TX group (TS × XBB ), and (3) TT group (TS × TS ), with the TT group used as a control. A total of 725 healthy chicks (XT group: 247, TX group: 180, TT group: 298) were reared up to 20 weeks of age to estimate the growth performance and associated meat parameters. The results showed that the XT and TX groups had higher body weight and body size compared with the TT group (
Poultry is an important dietary source of animal protein, accounting for approximately 30% of global meat consumption. Because of its low price, low fat and cholesterol content, and no religious restrictions, chicken is considered a widely available healthy meat. Chahua chicken No. 2 is a synthetic breed of Chahua chicken derived from five generations of specialized strain breeding. In this study, Chahua chicken No. 2 (CH) and Yao chicken (Y) were used as the research objects to compare the differences in physicochemical and nutritional indicators of meat quality between the two chicken breeds, and metabolomics was used to analyze the differences in metabolites and lipid metabolism pathways and to explore the expression of genes involved in adipogenesis. The physical index and nutritional value of CH are better than that of Y, and the chemical index of Y is better than that of CH. However, the chemical index results of CH are also within the normal theoretical value range. Comprehensive comparison shows that the meat quality of CH is relatively good. Metabolomics analysis showed that CH and Y had 85 different metabolites, and the differential metabolites were mainly classified into eight categories. KEGG pathway enrichment analysis revealed 13 different metabolic pathways. The screened PPARG, FABP3, ACSL5, FASN, UCP3 and SC5D were negatively correlated with muscle fat deposition, while PPARα, ACACA and ACOX1 were positively correlated with muscle fat deposition. The meat quality of CH was better than Y. The metabolites and metabolic pathways obtained by metabonomics analysis mainly involved the metabolism of amino acids and fatty acids, which were consistent with the differences in meat quality between the two breeds and the contents of precursors affecting flavor. The screened genes were associated with fatty deposition in poultry.
CD8 subunit alpha (CD8A) is an important gene in immunity and is involved in the functional regulation of T lymphocytes. However, the specific role and regulatory mechanism of CD8A in chicken T lymphocytes remain unknown. In this study, we overexpressed and interfered with CD8A in chicken T lymphocytes and found that interfering with CD8A expression inhibited the proliferation and induced the apoptosis of T lymphocytes and that the overexpression of CD8A promoted T lymphocyte activation. Additionally, transcriptomic and metabolomic analyses of chicken T lymphocytes with CD8A overexpression or interference were performed. The overexpression and interference of the CD8A gene caused widespread changes in gene and metabolite expression in chicken T cells. The results of the transcriptome analysis revealed that differentially expressed genes (DEGs) caused by altered expression of the CD8A gene were associated with multiple "neuroactive ligand-receptor interaction", "cell adhesion molecules", "calcium signaling pathway", etc. The metabolome analysis results revealed that different metabolites (DMs) caused by altered CD8A gene expression were associated with "Glutathione metabolism", "Arginine biosynthesis", "D-amino acid metabolism", etc. The combined transcriptional and metabolic analysis revealed one metabolically related pathway, "Glutathione metabolism". Our findings further revealed that interference and overexpression of CD8A plays a role in the metabolism of Glutathione. Thus, CD8A may be a critical regulator of "Glutathione metabolism" and may subsequently affect T-cell function in chickens. These results provide an important reference for further research on the effect of CD8A on the immune performance of chickens.
Abstract Many lines of evidence indicate that red jungle fowl (RJF) is the primary ancestor of domestic chickens. Although multiple versions of RJF (GRCg1~GRCg6a) and commercial chicken (GRCg7b/w) genomes have been assembled since 2004, no high-quality indigenous chicken genomes have been assembled, hampering the understanding of chicken domestication and evolution. To fill the gap, we sequenced the genomes of four indigenous chickens with distinct morphological traits in southwest China, using a combination of short, long and Hi-C reads. We assembled each genome (~1.0 Gb) into 42 chromosomes with chromosome N50 90.5~90.9 Mb, the highest quality of chicken genome assembly achieving so far. To provide resources for gene annotation and population genetic analysis, we also sequenced transcriptomes of 10 tissues for each of the four chickens and re-sequenced ~20 individuals for each of the four chicken breeds. Moreover, we corrected many mis-assemblies and assembled micro-chromosomes chr29 and chr34~chr39 for GRCg6a. Our assemblies, sequencing data and the correction of GRCg6a can be valuable resources for studying chicken domestication and evolution.
Abstract Many lines of evidence indicate that red jungle fowl (RJF) is the primary ancestor of domestic chickens. Although multiple versions of RJF (galgal2-galgal5 and GRCg6a) and commercial chickens (GRCg7b/w and Huxu) genomes have been assembled since 2004, no high-quality indigenous chicken genomes have been assembled, hampering the understanding of chicken domestication and evolution. To fill the gap, we sequenced the genomes of four indigenous chickens with distinct morphological traits in southwest China, using a combination of short, long and Hi-C reads. We assembled each genome (~1.0 Gb) into 42 chromosomes with chromosome N50 90.5–90.9 Mb, amongst the highest quality of chicken genome assemblies. To provide resources for gene annotation and functional analysis, we also sequenced transcriptomes of 10 tissues for each of the four chickens. Moreover, we corrected many mis-assemblies and assembled missing micro-chromosomes 29 and 34–39 for GRCg6a. Our assemblies, sequencing data and the correction of GRCg6a can be valuable resources for studying chicken domestication and evolution.
To evaluate the prevention and treatment effect of a Chinese herbal formula (CHF) on the bone disease of Cobb broiler chickens, compare its efficacy with Bisphosphonates (BPs), and provide a theoretical basis for studying the nutritional regulation technology of CHF to improve the bone characteristics of broiler chickens. In this study, 560 one-day-old Cobb broiler chickens were examined for the influence of Chinese herbal formula (CHF) and Bisphosphonates (BPs). Different doses of CHF and BPs were added to the diet, and the 30- and 60-day-old live weight, tibial bone strength, the microstructure of the distal femur cancellous bone, blood biochemical indexes related to bone metabolism, and genes related to bone metabolism were determined and analyzed. The results showed that the live weight of Cobb broilers fed with CHF and BPs in the diet was as follows: The live weight of the CHF group was higher than that of the normal control (NC) group, while the live weight of the BPs group was lower than that of the NC group; the CHF and BPs improved the bone strength of Cobb broilers and increased the elastic modulus, yield strength, and maximum stress of the tibia. CHF and BPs increased the cancellous bone mineral density (BMD), bone tissue ratio (BV/TV), bone surface area tissue volume ratio (BS/TV), bone trabecular thickness (Tb.Th), and bone trabecular number (Tb.N) in the distal femur, and decreased the bone surface area bone volume ratio (BS/BV) and bone trabecular separation (Tb.Sp). Thus, the microstructure of the bone tissue of the distal femur was improved to a certain extent. Both the CHF and the BPs also increased the serum levels of the vitamin D receptor (VDR), osteoprotegerin (OPG), and alkaline phosphatase (ALP), and decreased the content of osteocalcin (OT). Meanwhile, CHF and BPs upregulated the expression of osteogenic genes (BMP-2, OPG, Runx-2) to promote bone formation and downregulated the expression of osteoclastic genes (RANK, RANKL, TNF-α) to inhibit bone resorption, thus affecting bone metabolism. Conclusion: The CHF could improve the skeletal characteristics of Cobb broilers by upregulating the expression of bone-forming-related genes and downregulating the expression of bone-breaking-related genes, thus preventing and controlling skeletal diseases in Cobb broilers. Its effect was comparable to that of BPs. Meanwhile, the CHF-H group achieved the best results in promoting the growth and improvement of the skeletal characteristics of Cobb broilers based on the live weight and skeletal-characteristics-related indexes.
Abstract Despite recent progresses, the driving force of evolution and domestication of chickens remains poorly understood. To fill this gap, we recently sequenced and assembled genomes of four distinct indigenous chickens from Yunnan, China. Unexpectedly, we found large numbers of pseudogenes which have lost their functions and are fixed in their corresponding populations, and we also found highly variable proteomes in the genomes of the four indigenous chickens as well as the sequenced wild red jungle fowl (RJF) (GRCg6a). Although the four indigenous chicken breeds are closely related to the G. g. spadiceous subspecies, for the first time, we found that the RJF (GRCg6a) is of the G. g. bankiva origin. Thus, the five chicken share the most recent common ancestor (MRCA) before subspeciation. Our results support a scenario that the MRCA of the four indigenous chickens and the RJF possessed at least 21,972 genes, of which 7,993 are dispensable. Each chicken has lost functions of thousands of the dispensable genes during their evolution and domestication via complete gene loss and pseudogenization. The occurring pattens of completely lost genes and pseudogenes segregate the chickens as their phylogenetic tree does. Therefore, loss-of-function mutations might play important roles in chicken evolution and domestication.