Highly oriented graphite frameworks are constructed via a facile intercalation–expansion process, which present excellent EMI shielding performance and scalability, showing great potential for the application of next-generation flexible electronics.
Magnetic soft grippers have attracted intensive interest due to their untethered controllability, rapid response, and biological safety. However, manipulating living objects requires a simultaneous increase in shape adaptability and gripping force, which are typically mutually exclusive. Increasing the magnetic particle content enhances the magnetic strength but also increases the elastic modulus, leading to low adaptability and high impact force. Here, a porous magnetic soft gripper (PMSG) is developed by integrating a porous structure into a magnetic silicone elastomer. The design of porous hard magnetic composite is characterized by high magnetization, low modulus, and rough surface. It offers the PMSG good compliance, high gripping force, and low impact force at fast gripping. The PMSG is capable of performing a variety of tasks, including the fast and gentle grasping of delicate living objects. The study provides insight into the design of novel magnetic grippers and may offer a promising outlook for biomedical or scientific applications in the manipulation of delicate organisms.
In this study, gallium- and gelatin-modified strontium-doped hydroxyapatite (SrHA-Gel-Ga) bilayer coatings were prepared on titanium substrates by electrodeposition and spin-coating techniques. The results showed that gallium and gelatin were uniformly doped into the SrHA coatings, which exhibited good hydrophilicity and bioactivity. Furthermore, SrHA-Gel-Ga demonstrated good antimicrobial properties against E. coli and S. aureus, especially S. aureus. The co-doping of Sr and gelatin in the coatings was effective in mitigating the cytotoxicity of Ga. SrHA-Gel-Ga was better able to promote the adhesion, proliferation and early differentiation of MC3T3-E1 cells. This study provides a new strategy for the development of anti-infective bone repair coatings.
Liquid crystal elastomers (LCE) and magnetic soft materials are promising active materials in many emerging fields, such as soft robotics. Despite the high demand for developing active materials that combine the advantages of LCE and magnetic actuation, the lack of independent programming of the LCE nematic order and magnetization in a single material still hinders the desired multi-responsiveness. In this study, a ferromagnetic LCE (magLCE) ink with nematic order and magnetization is developed that can be independently programmed to be anisotropic, referred to as "dual anisotropy", via a customized 3D-printing platform. The magLCE ink is fabricated by dispersing ferromagnetic microparticles in the LCE matrix, and a 3D-printing platform is created by integrating a magnet with 3-DoF motion into an extrusion-based 3D printer. In addition to magnetic fields, magLCEs can also be actuated by heating sources (either environmental heating or photo-heating of the embedded ferromagnetic microparticles) with a high energy density and tunable actuation temperature. A programmed magLCE strip robot is demonstrated with enhanced adaptability to complex environments (different terrains, magnetic fields, and temperatures) using a multi-actuation strategy. The magLCE also has potential applications in mechanical memory, as demonstrated by the multistable mechanical metastructure array with remote writability and stable memory.
Abstract Untethered capsules hold clinical potential for the diagnosis and treatment of gastrointestinal diseases. Although considerable progress has been achieved recently in this field, the constraints imposed by the narrow spatial structure of the capsule and complex gastrointestinal tract environment cause many open-ended problems, such as poor active motion and limited medical functions. In this work, we describe the development of small-scale magnetically driven capsules with a distinct magnetic soft valve made of dual-layer ferromagnetic soft composite films. A core technological advancement achieved is the flexible opening and closing of the magnetic soft valve by using the competitive interactions between magnetic gradient force and magnetic torque, laying the foundation for the functional integration of both drug release and sampling. Meanwhile, we propose a magnetic actuation strategy based on multi-frequency response control and demonstrate that it can achieve effective decoupled regulation of the capsule’s global motion and local responses. Finally, through a comprehensive approach encompassing ideal models, animal ex vivo models, and in vivo assessment, we demonstrate the versatility of the developed magnetic capsules and their multiple potential applications in the biomedical field, such as targeted drug delivery and sampling, selective dual-drug release, and light/thermal-assisted therapy.
Abstract Miniaturization of modern micro‐electronic devices urges the development of multi‐functional thermal management materials. Traditional polymer composite‐based thermal management materials are promising candidates, but they suffer from single functionality, high cost, and low fire‐resistance. Herein, a multifunctional liquid metal (LM)‐bridged graphite nanoplatelets (GNPs)/ aramid nanofibers (ANFs) film is fabricated via a facile vacuum‐assisted self‐assembly approach followed by compression. ANFs serve as interfacial binders to link LM and GNPs together via hydrogen bondings and π–π interactions, while LM bridges the adjacent layer of GNPs to endow a fast thermal transport by phonons and electrons. The resultant composite films exhibit a high bidirectional thermal conductivity (In‐plane: 29.5 W m −1 K −1 and through‐plane: 5.3 W m −1 K −1 ), offering a reliable and effective cooling. Moreover, the as‐fabricated composite films exhibit superior flame‐retardance (peak of heat release rate of 4000J g −1 ), outstanding Joule heating performance (200 °C at supplied voltage of 3.5 V), and excellent electromagnetic interference shielding effectiveness (EMI SE of 62 dB). This work provides an efficient avenue to fabricate multifuntional thermal management materials for micro‐electronic devices, battery thermal management, and artificial intelligence.
According to the pseudopotential plane-wave method of first-principles calculation based on the spin density functional theory, the electronic structure, magnetic and optical properties of laminated molybdenum oxides (orthonormal and monoclinic MoO<sub>3</sub>) are studied theoretically. The interlaminar dissociation energy, band-structure, spin polarization, dielectric function, and the optical absorption/reflectivity in a charged state are systematically calculated to explore the potential technology applications of laminated MoO<sub>3</sub> as electrochromic or electromagnetic materials in optoelectronic devices. The semilocal GGA-PW91 and nonlocal HSE06 exchange-correlation functional are employed to obtain the more accurate crystal structure and band gap respectively. The cleavage energy results indicate that the single layers can easily flake off from the bulk material of these molybdenum oxides. The band structure and atomic-projected density of states prove that the conduction band minimum and valence band maximum are mainly derived from the atom-orbitals bonding oriented in layer-plane, representing characteristic two-dimensional electronic structure. The spin polarized calculations imply that the evident magnetic-moment will engender in MoO<sub>6</sub> octahedron layers of the perfect MoO<sub>3</sub> due to the substantial spin polarization of Mo and vertex O atoms which are ferromagnetic-coupling to produce significant net magnetic moments, essentially accounting for the magnetic source of bulk MoO<sub>3</sub>. The Mo vacancy reduces the electronic density of states derived from the spin polarized d-orbitals, leading the net magnetic moment to decrease, while the O<sub>I</sub> vacancy can reduce the density of spin-down states in the MoO<sub>3</sub>, resulting in the significant improvement of net magnetic moment. The existence of O<sub>II</sub> vacancy leads to the energetic spin-splitting of O-2p and Mo-4d orbital states, and thus increasing net magnetic moment by raising the electronic density of polarized spin-up states. The electron spin polarization of Mo-4d orbital component dominantly contributes to the bulk magnetism. The laminated MoO<sub>3</sub> presents a significant optical response in the visible region with obvious anisotropy of optical absorption spectra, which will represent a considerable blue shift or new low-frequency absorption peaks for visible light when loading charges. The calculation results demonstrate that the laminated molybdenum oxides have evident electrochromic property with controllable magnetic moment, which provides theoretical basis and technical data for developing novel functional materials with high performance to be used in electromagnetic or optoelectronic devices.
Abstract Carbon nanotube (CNT) reinforced polymer nanocomposites with high thermal conductivity show a promising prospect in thermal management of next‐generation electronic devices due to their excellent mechanical adaptability, outstanding processability, and superior flexibility. However, interfacial thermal resistance between individual CNT significantly hinders the further improvement in thermal conductivity of CNT‐reinforced nanocomposites. Herein, an interfacial welding strategy is reported to construct graphitic structure welded CNT (GS‐w‐CNT) networks. Notably, the obtained GS‐w‐CNT/polydimethylsiloxane (PDMS) nanocomposite with a GS loading of 4.75 wt% preserves a high thermal conductivity of 5.58 W m −1 K −1 with a 410% enhancement as compared to a pure CNT/PDMS nanocomposite. Molecular dynamics simulations are utilized to elucidate the effect of interfacial welding on the heat transfer behavior, revealing that the GS welding degree plays an important role in reducing both phonon scattering in the GS‐w‐CNT structure and interfacial thermal resistance at the interfaces between CNT. The unique welding strategy provides a new route to optimize the thermal transport performance in filler reinforced polymer nanocomposites, promoting their applications in next‐generation microelectronic devices.