For several years now, LYNRED, CEA-LETI and CEA-IRFU have been involved in the development of large area, very high performance NIR retinas for astronomy, in the context of the ALFA program (Astronomical Large Format Array). It aims at demonstrating the ability to produce in Europe low flux 2kx2k arrays exhibiting the very high performances required by science applications. In this context, high performance means very low dark current (below 0.1 e/s/px) with high QE (above 80%). LETI and LYNRED succeeded this year in the fabrication of a 2kx2k array, with very high uniformity as characterized at IRFU. One of those arrays will be used on the CAGIRE camera of the SVOM mission, aiming at observing afterglows of gamma ray bursts. Additional studies are ongoing on test arrays manufactured with the same technology to assess the behavior of this technology in terms of persistence and radiation hardness for space use.
Sofradir was first to show a 10μm focal plane array (FPA) in DSS 2012, and announced the DAPHNIS 10μm product family back in 2014. This pixel pitch is key for enabling more compact sensors and increased resolution. SOFRADIR recently achieved outstanding MTF demonstration at this pixel pitch, which clearly demonstrate the benefit to users of adopting 10μm pixel pitch focal plane array based detectors. The last results, and associated gain in detection performance, are discussed in this paper. Concurrently to pitch downsizing, SOFRADIR also works on a global offer using digital interfaces and smart pixel functionalities. This opens the road to enhanced functionalities such as improved image quality, higher frame rate, lower power consumption and optimum operation for wide thermal conditions scenes. This paper also discusses these enhanced features and strategies allowing easier integration of the detector in the system.
CEA and SOFRADIR have been manufacturing and characterizing near infrared detectors in the frame of ESA's near infrared large format sensor array roadmap to develop a 2Kx2K large format low flux low noise device for space applications such as astrophysics. These detectors use HgCdTe as the absorbing material and p/n diode technology. The technological developments (photovoltaic technology, readout circuit, ...) are shared between CEA/LETI and SOFRADIR, both in Grenoble, while most of the performances are evaluated at CEA/IRFU in Saclay where a dedicated test facility has been developed, in particular to measure very low dark currents. The paper will present the current status of these developments at the end of ESA's NIRLFSA phase 2. The performances of the latest batch of devices meet or are very close to all the requirements (quantum efficiency, dark current, cross talk, readout noise, ...) even though a glow induced by the ROIC prevents the accurate measurement of the dark current. The current devices are fairly small, 640x512 15μm pixels, and the next phase of activity will target the development of a full size 2Kx2K detector. From the design and development, to the manufacturing and finally the testing, that type of detector requests a high level of mastering. An appropriate manufacturing and process chain compatible with such a size is needed at industrial level and results obtained with CEA technology coupled with Sofradir industrial experience and work on large dimension detector allow French actors to be confident to address this type of future missions.
CAGIRE is the near infrared camera of the Colibrí robotic telescope, designed for the follow-up of SVOM alerts, mainly Gamma Ray Bursts (GRBs), and the quick imaging of sky regions where transient sources are detected by the SVOM satellite. CAGIRE is based on the Astronomical Large Format Array (ALFA) 2k x 2k SWIR sensor from the French consortium CEA-LYNRED. In the context of CAGIRE the sensor is operated in "Up the Ramp" mode to observe the sky in a square field of view of 21.7 arcmin on a side, in the range of wavelengths from 1.1 to 1.8 μm. An observation with CAGIRE consists of a series of short (1-2 minutes) exposures during which the pixels are read out every 1.3 second, continuously accumulating charges proportionally to the received flux, building a ramp. The main challenge is to quickly process and analyse these ramps, in order to identify and study the near infrared counterparts of the bursts, within 5 minutes of the reception of an alert. Our preprocessing, which is under development, aims at providing reliable flux maps for the astronomy pipeline. It is based on a sequence of operations. First, calibration maps are used to identify saturated pixels, and for each pixel, the usable (non saturated) range of the ramp. Then, the ramps are corrected for the electronic common mode noise, and differential ramps are constructed. Finally, the flux is calculated from the differential ramps, using a previously calibrated map of pixel non-linearities. We present here the sequence of operations performed by the preprocessing, which are based on previous calibrations of the sensor response. These operations lead to the production of a flux map corrected from cosmic-rays hits, a map depicting the quality of the fit, a map of saturated pixels and a map of pixels hit by cosmic-rays, before the acquisition of the next ramp. These maps will be used by the astronomy pipeline to quickly extract the scientific results of the observations, like the identification of uncatalogued or quickly variable sources that could be GRB afterglows.
Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.
Lynred develops infrared imaging sensors covering the entire infrared spectrum (SWIR, MWIR, LWIR, and VLWIR) through a variety of technologies including MCT (mercury cadmium telluride). Today with the increasing demand for better spatial resolution we observe the emergence of very large arrays detectors with ultra-fine pitch. The hybridization of such IR detector array onto a readout circuit represents one of the major limiting factors for the development of these detectors. Lynred has recently developed 2000×2000 pixels IR detectors down to 15 μm and 10 μm pitches, with successful and reproducible hybridization processes. In this paper we describe the main barriers and solutions put in place in order to realize these detectors, and the resulting prototypes are illustrated.