H4 influenza viruses have been isolated from birds across the world. In recent years, an H4 influenza virus infection has been confirmed in pigs. Pigs play an important role in the transmission of influenza viruses to human hosts. Therefore, it is important to develop a new vaccine in the case of an H4 influenza virus infection in humans, considering that this virus has a different antigenicity from seasonal human influenza viruses. In this study, after selecting vaccine candidate strains based on their antigenic relation to one of the pig isolates, A/swine/Missouri/A01727926/2015 (H4N6) (MO/15), an inactivated whole-particle vaccine was prepared from A/swan/Hokkaido/481102/2017 (H4N6). This vaccine showed high immunogenicity in mice, and the antibody induced by the vaccine showed high cross-reactivity to the MO/15 virus. This vaccine induced sufficient neutralizing antibodies and mitigated the effects of an MO/15 infection in a mouse model. This study is the first to suggest that an inactivated whole-particle vaccine prepared from an influenza virus isolated from wild birds is an effective countermeasure in case of a future influenza pandemic caused by the H4 influenza virus.
In vivo applications of reporter viruses are necessary to understand viral pathogenesis and provide a robust platform for antiviral development. In developing such applications, determination of an ideal locus to accommodate foreign genes is important, because insertion of foreign genes into irrelevant loci can disrupt the protein functions required for viral replication. Here, we investigated the criteria to determine ideal insertion sites of foreign genes from the protein structure of viral proteins. The recombinant viruses generated by our criteria exhibited propagation comparable to that of parental viruses in vivo . Our proteomic approach based on the flexibility profile of viral proteins may provide a useful tool for constructing reporter viruses, including Flaviviridae viruses.
Sporadic spreads of swine-origin influenza H3N2 variant (H3N2v) viruses were reported in humans, resulting in 437 human infections between 2011 and 2021 in the USA. Thus, an effective vaccine is needed to better control a potential pandemic for these antigenically distinct viruses from seasonal influenza. In this study, a candidate vaccine strain with efficient growth capacity in chicken embryos was established through serial blind passaging of A/Indiana/08/2011 (H3N2)v in mice and chicken embryos. Seven amino acid substitutions (M21I in PA; A138T, N165K, and V226A in HA; S312L in NP; T167I in M1; G62A in NS1 proteins) were found in the passaged viruses without a major change in the antigenicity. This mouse- and egg-adapted virus was used as a vaccine and challenge strain in mice to evaluate the efficacy of the H3N2v vaccine in different doses. Antibodies with high neutralizing titers were induced in mice immunized with 100 µg of inactivated whole-virus particles, and those mice were significantly protected from the challenge of homologous strain. The findings indicated that the established strain in the study was useful for vaccine study in mouse models.
Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples (“Neethling-like” clade 1.1 and “Kenya-like” subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.
Global dispersion of high pathogenicity avian influenza (HPAI), especially that caused by H5 clade 2.3.4.4, has threatened poultry industries and, potentially, human health. An HPAI virus, A/northern pintail/Hokkaido/M13/2020 (H5N8) (NP/Hok/20) belonging to clade 2.3.4.4b, was isolated from a fecal sample collected at a lake in Hokkaido, Japan where migratory birds rested, October 2020. In the phylogenetic trees of all eight gene segments, NP/Hok/20 fell into in the cluster of European isolates in 2020, but was distinct from the isolates in eastern Asia and Europe during the winter season of 2017–2018. The antigenic cartography indicates that the antigenicity of NP/Hok/20 was almost the same as that of previous isolates of H5 clade 2.3.4.4b, whereas the antigenic distances from NP/Hok/20 to the representative strains in clade 2.3.4.4e and to a strain in 2.3.4 were apparently distant. These data imply that HPAI virus clade 2.3.4.4b should have been delivered by bird migration despite the intercontinental distance, although it was not defined whether NP/Hok/20 was transported from Europe via Siberia where migratory birds nest in the summer season. Given the probability of perpetuation of transmission in the northern territory, periodic updates of intensive surveys on avian influenza at the global level are essential to prepare for future outbreaks of the HPAI virus.
Lumpy skin disease (LSD) is a transboundary viral infectious disease in cattle caused by a Capripoxvirus. LSD has been recently introduced in some Asian countries. However, in Mongolia, no report of LSD is publicly available. We clinically examined LSD symptoms in 1,034 cattle from 4 soum (district) in Dornod province in Mongolia. Sixty-one cattle of them were confirmed with symptoms of LSD and then viral P32 gene was detected by a PCR. The overall prevalence of LSD in cattle was 5.9%. Females odds ratios (OR) = 2.27 than males, adults (>2.5-years-old, OR = 3.68) than young (1–2.5-years-old) and calves (<1-year-old) were at higher risks for LSD cases in Mongolia, while locations near the tube well and pond water are major risk areas for viral transmission due to density of insects often is high. For virus isolation, skin nodule tissue samples of 4 cattle located in four distinct soums were used for viral propagation using the MDBK cell line. Internal terminal repeat region and RPO30 gene of 4 Mongolian isolates were amplified and sequenced. In the phylogenetic trees, Mongolian LSDVs (2021) were clustered together with the Chinese (2020) and Vietnamese isolates (2020). This is the first report alarming the LSD outbreak in Mongolia that was confirmed by our study. The newly isolated viruses would be a useful base for developing diagnostic tools and inactivated vaccine technology. A large-scale study of LSD is next priority for establishing successful control strategy of further disease outbreak.
Aim: We aimed to investigate the prevalence and molecular characterization of rabies virus (RABV) from wild and domestic animals in Mongolia during 2008-2010.Materials and Methods: Brain tissue samples were collected from 24 rabid animals in Zavkhan, Omnogovi, Tov, Dundgovi, Govi-Altai, Selenge, Ovorkhangai, and Khentii provinces in Mongolia.Herein, samples were included from 13 domestic animals (dogs, cattle, camels, sheep, and goat) and 11 wild animals (wolves and foxes) in this study.Direct fluorescent antibody (DFA) test and reverse transcriptase polymerase chain reaction (RT-PCR) were performed for detection of RABV, and positive samples were further processed for molecular characterization of the virus using nucleoprotein gene.Subsequently, the molecular characterization was determined based on the nucleoprotein gene.Results: Out of 24 samples, 22 samples were detected positive for RABV by DFA test, and its nucleoprotein gene was amplified in all of the 24 samples by RT-PCR.These Mongolian RABVs were classified within steppe-type virus clade by phylogenetic analysis of nucleoprotein gene sequences.This steppe-type virus clade was clearly divided by two Sub-clades (A and B).The most of Mongolian RABVs belongs to the Sub-clade A in the phylogenetic tree.Conclusion: These findings have clearly confirmed RABV in domestic and wild animals of Mongolia.Further molecular characterization indicated that this Mongolian strain is steppe-type virus clade consisting of two sub-clades; the Subclade A might be prevalent in Altai, Khangai, Khentii Mountains as a major genotype, whereas the Subclade B seems to be cosmopolitan in the steppe-type virus clade, is spread in northern central Eurasia.