Flow cytometry is an invaluable tool for the analysis of leukocyte populations in inflammation. Flow cytometers, particularly those designed purely for analysis rather than cell sorting, have now become user-friendly machines and are commonplace in many laboratories. Any cell type can be analyzed, as long as a single-cell suspension can be prepared, and small numbers of cells can be used, often without the need for purification, thus making measurements rapid and less susceptible to artifacts associated with lengthy cell separation procedures.
Using in situ hybridization, we have shown that activated human peripheral blood eosinophils express mRNA for granulocyte/macrophage colony-stimulating factor (GM-CSF). Between 15 and 27% of eosinophils gave positive hybridization signals for GM-CSF mRNA after stimulation with the calcium ionophore A23187 or interferon gamma, and 4 and 6% after incubation with interleukin 3 (IL-3) or IL-5. Activated eosinophils also gave specific immunoreactivity with an anti-GM-CSF polyclonal antibody, suggesting translation of the mRNA. These data indicate that eosinophils may be an important source of GM-CSF at sites of allergic inflammation. Furthermore, the identification of GM-CSF production by human eosinophils suggests that the pro-inflammatory potential of this cell type may be substantially greater than hitherto recognized.
In a search for novel leukocyte chemoattractants at sites of allergic inflammation, we found basophil-selective chemoattractant activity in extracts of human nasal polyps. The extracts were fractionated by reverse phase HPLC, and the resulting fractions were tested for leukocyte-stimulating activity using sensitive shape change assays. The basophil-selective activity detected was not depleted by a poxvirus CC-chemokine-binding protein affinity column. This activity was further purified by HPLC, and proteins in the bioactive fractions were analyzed by tandem electrospray mass spectrometry. Insulin-like growth factor-2 (IGF-2) was identified in these HPLC fractions, and the basophil-stimulating activity was inhibited by an anti-IGF-2-neutralizing Ab. Recombinant IGF-2 induced a substantial shape change response in basophils, but not eosinophils, neutrophils, or monocytes. IGF-2 stimulated chemokinesis of basophils, but not eosinophils or neutrophils, and synergized with eotaxin-1/CCL11 in basophil chemotaxis. IGF-2 also caused up-regulation of basophil CD11b expression and inhibited apoptosis, but did not stimulate degranulation or Ca(2+) flux. Recombinant IGF-1 exhibited similar basophil-selective effects as IGF-2, and both growth factors were detected in nasal polyp extracts by ELISA. This is the first demonstration of chemokinetic factors that increase the motility of basophils, but do not act on other granulocytes or monocytes. IGF-1 and IGF-2 could play a role in the selective recruitment of basophils in vivo.
Eosinophils, through their ability to generate an array of potent mediators, are thought to be the major effector cells in a number of conditions, including parasitic infection, asthma, and other allergic diseases. The mechanism(s) by which eosinophils, as opposed to neutrophils, accumulate at inflammatory sites is unknown. One possible mechanism would be an eosinophil-specific pathway of adhesion to vascular endothelium. In this study we have demonstrated that human eosinophils, but not neutrophils, constitutively express alpha 4 beta 1 (CD49d/CD29). Expression was not increased on low density eosinophils or normal density cells stimulated with platelet-activating factor. Eosinophils, but not neutrophils, specifically adhered to COS cells transfected with vascular adhesion molecule-1 in a alpha 4 beta 1-dependent manner. Eosinophil, but not neutrophil, adhesion to IL-1 stimulated human umbilical vascular endothelial cells was significantly inhibited by alpha 4 beta 1 mAb at both 5 h (p less than 0.05) and 20 h (p less than 0.001). Inhibition of both resting and platelet-activating factor-(10(-7) M) stimulated eosinophil adhesion was observed. We conclude that the alpha 4 beta 1/vascular adhesion molecule-1 adhesion pathway may be involved in specific eosinophil, as opposed to neutrophil, migration into sites of eosinophilic inflammation.
The ability of cetirizine, a novel antihistamine agent, to inhibit the in vivo activation of human eosinophils, neutrophils and monocytes has been investigated using C3b- and IgG-dependent rosette formation, cytotoxicity against opsonised parasitic larvae and adherence to plasma-coated glass (PCG). The drug inhibited platelet-activating factor (PAF)-induced enhancement of eosinophil and neutrophil IgG (Fc) and complement (C3b) rosettes with an IC<sub>50</sub> of 2 × 10<sup>––</sup><sup>5</sup><i>M. </i>There was also comparable inhibition of PAF-dependent enhancement of eosinophil cytotoxicity (for complement-coated schistosomula of <i>Schistosoma mansoni</i>)<i>. </i>Cetirizine inhibited PAF-induced eosinophil, but not neutrophil, hyperadherence to PCG. These data support the view that cetirizine may exert some of its anti-allergic effects by inhibiting the activation of human granulocytes and that it may also selectively inhibit PAF-induced eosinophil hyperadherence.
PGD(2), a major mast cell mediator, is a potent eosinophil chemoattractant and is thought to be involved in eosinophil recruitment to sites of allergic inflammation. In plasma, PGD(2) is rapidly transformed into its major metabolite delta(12)-PGJ(2), the effect of which on eosinophil migration has not yet been characterized. In this study we found that delta(12)-PGJ(2) was a highly effective chemoattractant and inducer of respiratory burst in human eosinophils, with the same efficacy as PGD(2), PGJ(2), or 15-deoxy-delta(12,14)-PGJ(2). Moreover, pretreatment of eosinophils with delta(12)-PGJ(2) markedly enhanced the chemotactic response to eotaxin, and in this respect delta(12)-PGJ(2) was more effective than PGD(2). delta(12)-PGJ(2)-induced facilitation of eosinophil migration toward eotaxin was not altered by specific inhibitors of intracellular signaling pathways relevant to the chemotactic response, phosphatidylinositol 3-kinase (LY-294002), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (U-0126), or p38 mitogen-activated protein kinase (SB-202190). Desensitization studies using calcium flux suggested that delta(12)-PGJ(2) signaled through the same receptor, CRTH2, as PGD(2). Finally, delta(12)-PGJ(2) was able to mobilize mature eosinophils from the bone marrow of the guinea pig isolated perfused hind limb. Given that delta(12)-PGJ(2) is present in the systemic circulation at relevant levels, a role for this PGD(2) metabolite in eosinophil release from the bone marrow and in driving eosinophil recruitment to sites of inflammation appears conceivable.